A new hybrid WDM/TDM passive optical network (PON) implemented by using all-optical wavelength converters (AOWCs) is proposed. The AOWCs are based on the cross-gain modulation (XGM) effect of the semiconductor o...A new hybrid WDM/TDM passive optical network (PON) implemented by using all-optical wavelength converters (AOWCs) is proposed. The AOWCs are based on the cross-gain modulation (XGM) effect of the semiconductor optical amplifier (SOA). Moreover, the feasibility of this sys- tem is experimentally demonstrated by evaluating the impacts of the optical wavelength conversion, time domain waveforms, eye diagrams and bit-error-rate (BER) in AOWC. The results show that the proposal will be a promising solution for the next generation access networks.展开更多
In a translucent network scenario, development of an optical control plane (OCP) that is aware of the location and number of available regenerators and all-optical wavelength converters (AOWCs) is of paramount importa...In a translucent network scenario, development of an optical control plane (OCP) that is aware of the location and number of available regenerators and all-optical wavelength converters (AOWCs) is of paramount importance. However, current generalized multiprotocol label switching (GMPLS) protocol suite does not consider the distribution of regenerator and AOWC availability information to all the network nodes. In this paper, we propose a novel optical control plane (OCP) architecture that 1) disseminates information about network components (i.e. regenerators and AOWCs) to all the network nodes, and 2) evaluates candidate routes which use fewest amounts of network components. Performance of the proposed OCP is compared with a recently proposed hybrid OCP approach in terms of blocking performance, number of deployed components and lightpath establishment setup times. The obtained simulation results show that the proposed OCP approach demonstrates low connection blocking and establishes lightpaths by 1) minimizing the overall network cost owing to the deployment of minimum total number of network components, and 2) demonstrating acceptable lightpath establishment setup times at all traffic loads. Further, the proposed OCP methodology is compatible and suitable for controlling the operations of a novel electro-optical hybrid translucent node which is a latency efficient technology capable of delivering a cost effective implementation suitable for large scale deployment.展开更多
Wavelength division multiplexing (WDM) has been becoming a promising solution to meet the rapidly growing demands on bandwidth. Multicast in WDM networks by employing free wavelength is an efficient approach to savi...Wavelength division multiplexing (WDM) has been becoming a promising solution to meet the rapidly growing demands on bandwidth. Multicast in WDM networks by employing free wavelength is an efficient approach to saving bandwidth and cost. However, the free wavelength may not identical between different hops in a multicast light-path, particularly in heavy load optical WDM networks. In order to implement multicast applications efficiently, a network coding (NC) technique was introduced into all-optical WDM multicast networks to solve wavelength collision problem between the multicast request and the unicast request. Compared with the wavelength conversion based optical multicast, the network coding based optical multicast can achieve better multicast performance with paying lower cost.展开更多
In this paper, Optical Cross-Connection (OXC) induced crosstalk has been carefully analyzed for multiwavelength all-optical networks. Formulae are derived for calculating the crosstalk power of homowavelength crosstal...In this paper, Optical Cross-Connection (OXC) induced crosstalk has been carefully analyzed for multiwavelength all-optical networks. Formulae are derived for calculating the crosstalk power of homowavelength crosstalk and the total crosstalk at the receiver end. The results show that the optical switches induced crosstalk dominates over other crosstalk components of OXC, and the accumulated homowavelength crosstalk increases almost linearly with the increasing of the OXC number. At the receiver end , the heterowavelength crosstalk induced by the receiver optical filter has the same order as that of homowavelength crosstalk of OXC. The results of different optical components model are also discussed.展开更多
文摘A new hybrid WDM/TDM passive optical network (PON) implemented by using all-optical wavelength converters (AOWCs) is proposed. The AOWCs are based on the cross-gain modulation (XGM) effect of the semiconductor optical amplifier (SOA). Moreover, the feasibility of this sys- tem is experimentally demonstrated by evaluating the impacts of the optical wavelength conversion, time domain waveforms, eye diagrams and bit-error-rate (BER) in AOWC. The results show that the proposal will be a promising solution for the next generation access networks.
文摘In a translucent network scenario, development of an optical control plane (OCP) that is aware of the location and number of available regenerators and all-optical wavelength converters (AOWCs) is of paramount importance. However, current generalized multiprotocol label switching (GMPLS) protocol suite does not consider the distribution of regenerator and AOWC availability information to all the network nodes. In this paper, we propose a novel optical control plane (OCP) architecture that 1) disseminates information about network components (i.e. regenerators and AOWCs) to all the network nodes, and 2) evaluates candidate routes which use fewest amounts of network components. Performance of the proposed OCP is compared with a recently proposed hybrid OCP approach in terms of blocking performance, number of deployed components and lightpath establishment setup times. The obtained simulation results show that the proposed OCP approach demonstrates low connection blocking and establishes lightpaths by 1) minimizing the overall network cost owing to the deployment of minimum total number of network components, and 2) demonstrating acceptable lightpath establishment setup times at all traffic loads. Further, the proposed OCP methodology is compatible and suitable for controlling the operations of a novel electro-optical hybrid translucent node which is a latency efficient technology capable of delivering a cost effective implementation suitable for large scale deployment.
基金supported by the Doctor Foundation of Shandong Province (BS2013DX032)the Youth Scholars Development Program of Shandong University of Technology
文摘Wavelength division multiplexing (WDM) has been becoming a promising solution to meet the rapidly growing demands on bandwidth. Multicast in WDM networks by employing free wavelength is an efficient approach to saving bandwidth and cost. However, the free wavelength may not identical between different hops in a multicast light-path, particularly in heavy load optical WDM networks. In order to implement multicast applications efficiently, a network coding (NC) technique was introduced into all-optical WDM multicast networks to solve wavelength collision problem between the multicast request and the unicast request. Compared with the wavelength conversion based optical multicast, the network coding based optical multicast can achieve better multicast performance with paying lower cost.
文摘In this paper, Optical Cross-Connection (OXC) induced crosstalk has been carefully analyzed for multiwavelength all-optical networks. Formulae are derived for calculating the crosstalk power of homowavelength crosstalk and the total crosstalk at the receiver end. The results show that the optical switches induced crosstalk dominates over other crosstalk components of OXC, and the accumulated homowavelength crosstalk increases almost linearly with the increasing of the OXC number. At the receiver end , the heterowavelength crosstalk induced by the receiver optical filter has the same order as that of homowavelength crosstalk of OXC. The results of different optical components model are also discussed.