Field reversed configuration(FRC)is widely considered as an ideal target plasma for magnetoinertial fusion.However,its confinement and stability,both proportional to the radius,will deteriorate inevitably during radia...Field reversed configuration(FRC)is widely considered as an ideal target plasma for magnetoinertial fusion.However,its confinement and stability,both proportional to the radius,will deteriorate inevitably during radial compression.Hence,we propose a new fusion approach based on axial compression of a large-sized FRC.The axial compression can be made by plasma jets or plasmoids converging onto the axial ends of the FRC.The parameter space that can reach the ignition condition while preserving the FRC's overall quality is studied using a numerical model based on different FRC confinement scalings.It is found that ignition is possible for a large FRC that can be achieved with the current FRC formation techniques if compression ratio is greater than 50.A more realistic compression is to combine axial with moderate radial compression,which is also presented and calculated in this work.展开更多
In this paper,a new type of bamboo scrimber column embedded with steel bars(rebars)was proposed,and the compression performance was improved by pre-embedding rebars during the preparation of the columns.The effects of...In this paper,a new type of bamboo scrimber column embedded with steel bars(rebars)was proposed,and the compression performance was improved by pre-embedding rebars during the preparation of the columns.The effects of the slenderness ratio and the reinforcement ratio on the axial compression performance of reinforced bamboo scrimber columns were studied by axial compression tests on 28 specimens.The results showed that the increase in the slenderness ratio had a significant negative effect on the axial compression performance of the columns.When the slenderness ratio increased from 19.63 to 51.96,the failure mode changed from strength failure to buckling failure,and the maximum bearing capacity decreased by 43.03%.The axial compression performance of the reinforced bamboo scrimber columns did not significantly improve at a slenderness ratio of 19.63,but the opposite was true at slenderness ratios of 36.95 and 51.96.When the reinforcement ratio increased from 0%to 4.52%,the bearing capacity of those with a slenderness ratio of 51.96 increased by up to 16.99%,and the stiffness and ductility were also improved.Finally,based on existing specifications,two modification parameters,the overall elastic modulus Ec and the combined strength fcc,were introduced to establish a calculation method for the bearing capacity of the reinforced bamboo scrimber columns.The calculation results were compared with the test results,and the results showed that the proposed calculation models can more accurately predict the bearing capacity.展开更多
Given their numerous functional and architectural benefits,such as improved bearing capacity and increased resistance to elastic instability modes,cold-formed steel(CFS)built-up sections have become increasingly devel...Given their numerous functional and architectural benefits,such as improved bearing capacity and increased resistance to elastic instability modes,cold-formed steel(CFS)built-up sections have become increasingly developed and used in recent years,particularly in the construction industry.This paper presents an analytical and numerical study of assembled CFS two single channel-shaped columns with different slenderness and configurations(backto-back,face-to-face,and box).These columns were joined by double-row rivets for the back-to-back and box configurations,whereas they were welded together for the face-to-face design.The built-up columns were filled with ordinary concrete of good strength.Finite element models were applied,using ABAQUS software,to assess mechanical performance and study the influence of assembly techniques on the behavior of cold-formed columns under axial compression.Analytical approaches based on Eurocode 3 and Eurocode 4 recommendations for un-filled and concrete-filled columns respectively were followed for the numerical analysis,and concrete confinement effects were also considered per American Concrete Institute(ACI)standards for face-to-face and box configurations.The obtained results indicated a good correlation between the numerical results and the proposed analytical methodology which did not exceed 8%.The failure modes showed that the columns failed due to instabilities such as local and global buckling.展开更多
Since fibre-reinforced polymer(FRP) and stainless steel(SS) offer advantages of corrosion resistance and hybrid confinement, this study proposed a new type of composite column: sea sand concrete(SSC)-filled SS tubular...Since fibre-reinforced polymer(FRP) and stainless steel(SS) offer advantages of corrosion resistance and hybrid confinement, this study proposed a new type of composite column: sea sand concrete(SSC)-filled SS tubular columns with an inner FRP tube(CFSTFs) to help exploit abundant ocean resources in marine engineering. To study compressive behaviours of these novel members, eight CFSTFs and two SSC-filled SS tubular columns(CFSTs)were tested under axial compression. Their axial load-displacement curves, axial load-strain curves in SS or FRP tubes were obtained, and influences of key test parameters(the existence of glass FRP(GFRP) tubes, steel tube shapes, and GFRP tube thicknesses and diameters) were discussed. Further, specimen failure mechanism was analyzed employing the finite element method using ABAQUS software. Test results confirmed the excellent ductility and load-bearing capacity of CFSTFs. The existence of GFRP tubes inside can postpone SS tube buckling, and the content of inner FRP tubes, particularly increasing diameters, was found to improve compressive behaviours. GFRP contents helped develop the second elastic-plastic stage of the load-displacement curves. Furthermore, the bearing capacity of CFSTFs with a circular cross-section was approximately 26% higher than that with a square cross-section, and this difference narrowed with the increase in GFRP ratios.展开更多
AIM:To explore the long-term efficacy,safety,and optical mechanism of orthokeratology with increased compression factor in adolescent myopia control.METHODS:A prospective,double-masked,and randomized clinical trial wa...AIM:To explore the long-term efficacy,safety,and optical mechanism of orthokeratology with increased compression factor in adolescent myopia control.METHODS:A prospective,double-masked,and randomized clinical trial was performed from May 2016 to June 2020.Subjects aged between 8 and 16y,with myopia(-5.00 to-1.00 D),low astigmatism(≥-1.50 D)and anisometropia(≤1.00 D),were stratified into low(-2.75 to-1.00 D)and moderate(-5.00 to-3.00 D)myopia groups.Then they were randomly assigned to wear either increased compression factor(ICF;1.75 D)orthokeratology or conventional compression factor(CCF;0.75 D)orthokeratology.The data were recorded including axial length(AL),spherical equivalent(SE),best corrected visual acuity(BCVA),near visual acuity(NVA),corneal staining(using Efron grading scales),corneal hysteresis(CH),corneal resistance factor(CRF),higher-order aberrations(HOAs,expressed as root mean square,RMS_(h)),and subfoveal choroidal thickness(SFCh T)in the 2-year followup period.Pearson's correlation coefficient was conducted to analyze the association between the changes in AL and RMS_(h),SFCh T.RESULTS:At the 2-year visit,there were no statistical differences in all the parameters between the ICF group and the CCF group in low myopia subjects(P>0.05).For the moderate myopia subjects,the ICF group had shorter AL elongation(0.23±0.08 vs 0.30±0.11 mm,P=0.015),higher RMS_(h)(1.94±0.50 vs 1.65±0.51μm,P=0.041),and higher SFCh T(279.04±35.72 vs 254.08±29.60μm,P=0.008)than those in CCF group.The change in AL was negatively correlated with RMS_(h)(r=-0.687,P<0.001)and SFCh T(r=-0.464,P=0.013).CONCLUSION:ICF orthokeratology can control the progression of moderate myopia more effectively,which might be related to greater RMS_(h) and SFCh T.展开更多
The volumetric strain was categorized into elastic and plastic parts. The farmer camposed of axial and lateral strains is uniform and determined by Hooke's law ; however, the latter consisting of axial and lateral st...The volumetric strain was categorized into elastic and plastic parts. The farmer camposed of axial and lateral strains is uniform and determined by Hooke's law ; however, the latter consisting of axial and lateral strains is a fuaction af thickness af shear band determined by grndieat-dependeat plasticity by cansidering the heterngeneity of quasi- brittle materials. The non- uniform lateral strain due to the fact that shear band was farmed in the middle of specimen was averaged within specimen to precisely assess the volumetric strain. Then, the analytical expression for volumetric strain was verified by comparison with two earlier experimental results for concrete and rack. Finally, a detailed parametric study was carried out to investigate effects of constitutive parameters ( shear band thickness, elastic and softening rnoduli ) and geometrical size of specimen( height and width of specimen ) on the volume dilatancy.展开更多
Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical proper...Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical property of the L-shaped column. The load-displacement curve for the L-shaped column, the deflection and load-strain curves for the mono columns were obtained by the axial compression experiment. The results show that the L-shaped column exhibits a flexural-torsional buckling failure mode. The numerical simulation by the finite element analysis shows that the bearing capacity and failure mode are in accordance with those of the axial compression experiment and the feasi- bility of the finite element analysis is proved. For the calculation of the bearing capacity of the L-shaped column com- posed of concrete-filled square steel tubes, an analytical method is proposed based on the theory of the elastic stability and spatial truss model. The results of the analytical method are in good agreement with those of the axial compression experiment and the finite element analysis.展开更多
A stiffened cylindrical shell is normally used in refuge chambers of a coal mine. Based on the method of application and shape characteristics of a refuge chamber, we simplified its shell as an orthotropic cylinder. T...A stiffened cylindrical shell is normally used in refuge chambers of a coal mine. Based on the method of application and shape characteristics of a refuge chamber, we simplified its shell as an orthotropic cylinder. The basic buckling equation of the stiffened cylindrical shell under uniform axial compression was deduced by using a Donnell function. The factors affecting its buckling capacity were studied by theoretical analysis and numerical calculations. The results reveal that the torsional rigidity of the longitudinal stiffener had little effect on the buckling capacity of the shell and that the critical load of an externally stiffened cylindrical shell is higher than that of an internally stiffened cylindrical shell.展开更多
Although smoothness, softness, and stiffness determine the physical and mechanical behavior of a fabric and the subjective assessment of quality when it is handled, the perceived comfort of clothing is more important ...Although smoothness, softness, and stiffness determine the physical and mechanical behavior of a fabric and the subjective assessment of quality when it is handled, the perceived comfort of clothing is more important to consumers. The sensations perceived from the contact of clothing with the skin can greatly influence our over-all state of comfort and one aspect of this is the unpleasant skin sensation of prickle. Surface prickle of fabrics can be a factor limiting the use of the coarser types of ramie in apparel. And the mechanical stimulus of fabric-evoked prickle underlies our discomfort to fabrics independent in the majority of cases of any chemical or the atopic status of the individual. It is known that the prickle of fabric can be reduced by fabric-finishing treatments, but the assessment of fabric prickle is often done subjectively. This is time consuming, and it is difficult to obtain reliable and reproducible results, since variability between subjects in their sensitivity to prickle, such as skin mechanical properties, effective density of nociceptors and the mood state of the individual. In order to find an objective method of measuring the physical properties of the stiff fiber ends protruding from the fabrics to predict prickle, axial compression bending tests were examined by using single ramie fiber. By comparing analysis, it is found that the critical compressing load (Pcr), the bending modulus (E) are the important parameters. The relationship of the critical load (Pcr) with the length of fiber (L) and the fineness of fiber (Nt) has been investigated.展开更多
Based on the constancy hypothesis of material volume, the circumferential and radial stresses of a cylinder specimen are analyzed when the cylinder is subject to a loading along the axial direction. The circumferentia...Based on the constancy hypothesis of material volume, the circumferential and radial stresses of a cylinder specimen are analyzed when the cylinder is subject to a loading along the axial direction. The circumferential and radial stress distribution is a power function of radius parameter when the constitutive relation of specimen material is orthotropic. The stress distribution is a quadratic function of radius parameter for transversely isotropic material. Along the cylinder axial line, the circumferential and radial stresses are maximum and equal to each other. In the circumference boundary surface, the radial stress is zero and the circumferential stress value is minimal. The failure theory of maximum tensile circumferential strain is applied to calculate the critical axial loading. The circumference-boundary-layer failure criterion of orthotropic cylinders is described with the Hill-Tsai strength theory. The obtained strength theory is related to axial stress and mechanical properties of specimen material and to the specimen axialdeformation strain rate and the change rate of strain rate.展开更多
Post stall behaviors of a single stage compression system are studied theoretically and experimentally in this paper. A one dimensional nonlinear model, which is able to describe the dynamically post stall behavio...Post stall behaviors of a single stage compression system are studied theoretically and experimentally in this paper. A one dimensional nonlinear model, which is able to describe the dynamically post stall behaviors of the compression system, is applied to simulate the post stall behaviors digitally. The stall types, i.e. , rotating stall and surge, are determined. The variations of annular average parameters while the compression system goes into stall are also calculated exactly. The post stall behaviors are measured on the single stage compressor test rig. The measurement shows that rotating stall and surge appear under different conditions. On the basis of experiments, it is found that the post stall behaviors are influenced remarkably by some factors, such as rotation speeds, construction type and size of the exhaust duct. Good agreement between the simulation and experiments proves that this modeling technique is valid for simulating the post stall behaviors.展开更多
The static tests of nine traditional and bird beak square hollow structure(SHS) T-joints with different β values and connection types under axial compression at brace end were carried out. Experimental test schemes, ...The static tests of nine traditional and bird beak square hollow structure(SHS) T-joints with different β values and connection types under axial compression at brace end were carried out. Experimental test schemes, failure modes of specimens, jack load-vertical displacement curves, jack load-deformation of chord and strain intensity distribution curves of joints were presented. The effects of β and connection types on axial compression property of joints were studied. The results show that the ultimate axial compression capacity of common bird beak SHS T-joints and diamond bird beak SHS T-joints is larger than that of traditional SHS T-joint specimens with big values of β. The ultimate axial compression capacity of diamond bird beak SHS T-joints is larger than that of common bird beak SHS T-joints. As β increases, the increase of the ultimate axial compression capacity of diamond bird beak SHS T-joints over that of common bird beak joints grows. The ultimate axial compression capacity and the initial axial stiffness of all kinds of joints increase as β increases, and the initial axial stiffness of the diamond bird beak SHS T-joints is the largest. The ductilities of common bird beak and diamond bird beak SHS T-joints increase as β increases, but the ductility of the traditional SHS T-joints decreases as β increases.展开更多
An investigation is conducted on the static ultimate limit state assessment of ship hull plates with elastically restrained edges subjected to axial compression.Both material and geometric non-linearities were conside...An investigation is conducted on the static ultimate limit state assessment of ship hull plates with elastically restrained edges subjected to axial compression.Both material and geometric non-linearities were considered in finite element(FE)analysis.The initial geometric imperfection of the plate was considered,while the residual stress introduced by welding was not considered.The ultimate strength of simply supported ship hull plates compared well with the existing empirical formula to validate the correctness of the applied boundary conditions,initial imperfection and mesh size.The extensive FE calculations on the ultimate strength of ship hull plates with elastically restrained edges are presented.Then a new simple empirical formula for plate ultimate strength is developed,which includes the effect of the rotational restraint stiffness,rotational restraint stiffness,and aspect ratios.By applying the new formula and FE method to ship hull plates in real ships,a good coincidence of the results between these two methods is obtained,which indicates that the new formula can accurately predict the ultimate strength of ship hull plates with elastically restrained edges.展开更多
The axial,lateral and circumferential strains were analyzed for a rock specimen subjected to shear failure in the form of a shear band bisecting the specimen in triaxial compression.Plastic deformation of the specimen...The axial,lateral and circumferential strains were analyzed for a rock specimen subjected to shear failure in the form of a shear band bisecting the specimen in triaxial compression.Plastic deformation of the specimen stemmed from shear strain localization initiated at the peak shear stress.Beyond the onset of strain localization,the axial,lateral and circumferential strains were decomposed into two parts,respectively.One is the elas- tic strain described by general Hooke's law.The other is attributable to the plastic shear slips along shear band with a certain thickness dependent on the internal length of rock. The post-peak circumferential strain-axial strain curve of longer specimen is steeper than that of shorter specimen,as is consistent with the previous experiments.In elastic stage, the circumferential strain-axial strain curve exhibits nonlinear characteristic,as is in agreement with the previous experiment since confining pressure is loaded progressively until a certain value is reached.When the confining pressure is loaded completely,the circumferential strain-axial strain curve is linear in elastic and strain-softening stages.The predicted circumferential strain-axial strain curve in elastic and strain-softening stages agrees with the previous experiment.展开更多
Stability analyses of perfect and imperfect cylindrical shells under axial compression and torsion were presented. Finite element method for the stability analysis of perfect cylindrical shells was put forward through...Stability analyses of perfect and imperfect cylindrical shells under axial compression and torsion were presented. Finite element method for the stability analysis of perfect cylindrical shells was put forward through comparing critical loads and the first buckling modes with those obtained through theoretical analysis. Two typical initial defects, non-circularity and uneven thickness distribution, were studied. Critical loads decline with the increase of non-circularity, which exist in imperfect cylindrical shells under both axial compression and torsion. Non-circularity defect has no effect on the first buckling mode when cylindrical shell is under torsion. Unfortunately, it has a completely different buckling mode when cylindrical shell is under axial compression. Critical loads decline with the increase of thickness defect amplitude, which exist in imperfect cylindrical shells under both axial compression and torsion, too. A greater wave number is conducive to the stability of cylindrical shells. The first buckling mode of imperfect cylindrical shells under torsion maintains its original shape, but it changes with wave number when the cylindrical shell is under axial compression.展开更多
Bamboo is a unique fiber-reinforced bio-composite with fibers embedded into a parenchyma cell matrix.We conducted axial compression tests on bamboo blocks prepared from bottom to top,and from inner to outer portions o...Bamboo is a unique fiber-reinforced bio-composite with fibers embedded into a parenchyma cell matrix.We conducted axial compression tests on bamboo blocks prepared from bottom to top,and from inner to outer portions of the culm.The apparent Young’s modulus and compressive strength of whole thickness bamboo blocks exhibited slight increases with increasing height along the culm,due to slight increases of fiber volume fraction(Vf)from 28.4 to 30.4%.Other blocks showed a significant increase in apparent Young’s modulus and strength from the inner to outer part of the culm wall,mainly owing to a sharp increase of Vf from 17.1 to 59.8%.With a decrease of fiber fraction volume there was a transition from relatively brittle behavior to very ductile behavior in bamboo blocks.Results indicated that stiffness and strength of bamboo was primarily due to fiber in compression,and ductility of bamboo was provided by the parenchyma cell matrix acting as a natural fiber-reinforced composite.展开更多
This paper provides a review of recent research advances and trends in the area of stability of unstiffened circular cylindrical shells subjected to general non-uniform axial compressive stresses.Only the more importa...This paper provides a review of recent research advances and trends in the area of stability of unstiffened circular cylindrical shells subjected to general non-uniform axial compressive stresses.Only the more important and interesting aspects of the research,judged from a personal viewpoint,are discussed.They can be crudely classified into four categories:(1) shells subjected to non-uniform loads;(2) shells on discrete supports;(3) shells with intended cutouts/holes;and (4) shells with non-uniform settlements.展开更多
Axial piston pump with pre-compression volume(PCV) has lower flow ripple in large scale of operating condition than the traditional one. However, there is lack of precise simulation model of the axial piston pump wi...Axial piston pump with pre-compression volume(PCV) has lower flow ripple in large scale of operating condition than the traditional one. However, there is lack of precise simulation model of the axial piston pump with PCV, so the parameters of PCV are difticult to be determined. A finite element simulation model for piston pump with PCV is built by considering the piston movement, the fluid characteristic(including fluid compressibility and viscosity) and the leakage flow rate. Then a test of the pump flow ripple called the secondary source method is implemented to validate the simulation model. Thirdly, by comparing results among the simulation results, test results and results from other publications at the same operating condition, the simulation model is validated and used in optimizing the axial piston pump with PCV. According to the pump flow ripples obtained by the simulation model with different PCV parameters, the flow ripple is the smallest when the PCV angle is 13~, the PCV volume is 1.3 ~ I0-4 m3 at such operating condition that the pump suction pressure is 2 MPa, the pump delivery pressure 15 MPa, the pump speed 1 000 r/min, the swash plate angle 13~. At the same time, the flow ripple can be reduced when the pump suction pressure is 2 MPa, the pump delivery pressure is 5 MPa,15 MPa, 22 MPa, pump speed is 400 r/min, 1 000 r/rain, 1 500 r/rain, the swash plate angle is ll~, 13~, 15~ and 17~, respectively. The finite element simulation model proposed provides a method for optimizing the PCV structure and guiding for designing a quieter axial piston pump.展开更多
Based on minimum energy principle for plastic forming, tearing and buckling failures mechanisms are explored and criteria for them are developed by theoretical analysis and experiment. Combined with finite element sof...Based on minimum energy principle for plastic forming, tearing and buckling failures mechanisms are explored and criteria for them are developed by theoretical analysis and experiment. Combined with finite element software developed forming limit and effects of process parameters on failures are investigated and proper parameters for stable forming are determined. The results show that: 1) The failures and forming limit are mainly determined by geometry and materials parameters of tube blank, fillet radius or half conical angle of die. For the process under fillet die, there exists a maximum fillet radius within which no tearing failure happens, and a maximum radius and a minimum radius range within which no buckling failure happens. For the process under conical die, there exists a maximum and minimum half conical angle range within which no tearing and buckling failures occur. 2) For both forming processes, the higher the value of material strain hardening exponent or the lower the value of relative thickness, the more impossible for tearing and buckling failures to occur, and the larger the ranges of fillet radius and half conical angle. The experiment results verify the reliability and practicability of this research.展开更多
基金supported by National Natural Science Foundation of China(No.12175226)。
文摘Field reversed configuration(FRC)is widely considered as an ideal target plasma for magnetoinertial fusion.However,its confinement and stability,both proportional to the radius,will deteriorate inevitably during radial compression.Hence,we propose a new fusion approach based on axial compression of a large-sized FRC.The axial compression can be made by plasma jets or plasmoids converging onto the axial ends of the FRC.The parameter space that can reach the ignition condition while preserving the FRC's overall quality is studied using a numerical model based on different FRC confinement scalings.It is found that ignition is possible for a large FRC that can be achieved with the current FRC formation techniques if compression ratio is greater than 50.A more realistic compression is to combine axial with moderate radial compression,which is also presented and calculated in this work.
基金supported by the Resources Industry Science and Technology Innovation Joint Funding Project of Nanping City(N2021Z007)the Innovation Foundation for Doctoral Program of Forestry Engineering of Northeast Forestry University(LYGC202119).
文摘In this paper,a new type of bamboo scrimber column embedded with steel bars(rebars)was proposed,and the compression performance was improved by pre-embedding rebars during the preparation of the columns.The effects of the slenderness ratio and the reinforcement ratio on the axial compression performance of reinforced bamboo scrimber columns were studied by axial compression tests on 28 specimens.The results showed that the increase in the slenderness ratio had a significant negative effect on the axial compression performance of the columns.When the slenderness ratio increased from 19.63 to 51.96,the failure mode changed from strength failure to buckling failure,and the maximum bearing capacity decreased by 43.03%.The axial compression performance of the reinforced bamboo scrimber columns did not significantly improve at a slenderness ratio of 19.63,but the opposite was true at slenderness ratios of 36.95 and 51.96.When the reinforcement ratio increased from 0%to 4.52%,the bearing capacity of those with a slenderness ratio of 51.96 increased by up to 16.99%,and the stiffness and ductility were also improved.Finally,based on existing specifications,two modification parameters,the overall elastic modulus Ec and the combined strength fcc,were introduced to establish a calculation method for the bearing capacity of the reinforced bamboo scrimber columns.The calculation results were compared with the test results,and the results showed that the proposed calculation models can more accurately predict the bearing capacity.
文摘Given their numerous functional and architectural benefits,such as improved bearing capacity and increased resistance to elastic instability modes,cold-formed steel(CFS)built-up sections have become increasingly developed and used in recent years,particularly in the construction industry.This paper presents an analytical and numerical study of assembled CFS two single channel-shaped columns with different slenderness and configurations(backto-back,face-to-face,and box).These columns were joined by double-row rivets for the back-to-back and box configurations,whereas they were welded together for the face-to-face design.The built-up columns were filled with ordinary concrete of good strength.Finite element models were applied,using ABAQUS software,to assess mechanical performance and study the influence of assembly techniques on the behavior of cold-formed columns under axial compression.Analytical approaches based on Eurocode 3 and Eurocode 4 recommendations for un-filled and concrete-filled columns respectively were followed for the numerical analysis,and concrete confinement effects were also considered per American Concrete Institute(ACI)standards for face-to-face and box configurations.The obtained results indicated a good correlation between the numerical results and the proposed analytical methodology which did not exceed 8%.The failure modes showed that the columns failed due to instabilities such as local and global buckling.
基金financially supported by the Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2020A1515010095and 2023A1515010080)the Science and Technology Program of Guangzhou (Grant No. 202201010126)the Young Science and Technology Talent Support Project of Guangzhou Association for Science and Technology (Grant No. X20210201066)。
文摘Since fibre-reinforced polymer(FRP) and stainless steel(SS) offer advantages of corrosion resistance and hybrid confinement, this study proposed a new type of composite column: sea sand concrete(SSC)-filled SS tubular columns with an inner FRP tube(CFSTFs) to help exploit abundant ocean resources in marine engineering. To study compressive behaviours of these novel members, eight CFSTFs and two SSC-filled SS tubular columns(CFSTs)were tested under axial compression. Their axial load-displacement curves, axial load-strain curves in SS or FRP tubes were obtained, and influences of key test parameters(the existence of glass FRP(GFRP) tubes, steel tube shapes, and GFRP tube thicknesses and diameters) were discussed. Further, specimen failure mechanism was analyzed employing the finite element method using ABAQUS software. Test results confirmed the excellent ductility and load-bearing capacity of CFSTFs. The existence of GFRP tubes inside can postpone SS tube buckling, and the content of inner FRP tubes, particularly increasing diameters, was found to improve compressive behaviours. GFRP contents helped develop the second elastic-plastic stage of the load-displacement curves. Furthermore, the bearing capacity of CFSTFs with a circular cross-section was approximately 26% higher than that with a square cross-section, and this difference narrowed with the increase in GFRP ratios.
基金Supported by Education Department Foundation of Sichuan Province(No.15ZA0262)。
文摘AIM:To explore the long-term efficacy,safety,and optical mechanism of orthokeratology with increased compression factor in adolescent myopia control.METHODS:A prospective,double-masked,and randomized clinical trial was performed from May 2016 to June 2020.Subjects aged between 8 and 16y,with myopia(-5.00 to-1.00 D),low astigmatism(≥-1.50 D)and anisometropia(≤1.00 D),were stratified into low(-2.75 to-1.00 D)and moderate(-5.00 to-3.00 D)myopia groups.Then they were randomly assigned to wear either increased compression factor(ICF;1.75 D)orthokeratology or conventional compression factor(CCF;0.75 D)orthokeratology.The data were recorded including axial length(AL),spherical equivalent(SE),best corrected visual acuity(BCVA),near visual acuity(NVA),corneal staining(using Efron grading scales),corneal hysteresis(CH),corneal resistance factor(CRF),higher-order aberrations(HOAs,expressed as root mean square,RMS_(h)),and subfoveal choroidal thickness(SFCh T)in the 2-year followup period.Pearson's correlation coefficient was conducted to analyze the association between the changes in AL and RMS_(h),SFCh T.RESULTS:At the 2-year visit,there were no statistical differences in all the parameters between the ICF group and the CCF group in low myopia subjects(P>0.05).For the moderate myopia subjects,the ICF group had shorter AL elongation(0.23±0.08 vs 0.30±0.11 mm,P=0.015),higher RMS_(h)(1.94±0.50 vs 1.65±0.51μm,P=0.041),and higher SFCh T(279.04±35.72 vs 254.08±29.60μm,P=0.008)than those in CCF group.The change in AL was negatively correlated with RMS_(h)(r=-0.687,P<0.001)and SFCh T(r=-0.464,P=0.013).CONCLUSION:ICF orthokeratology can control the progression of moderate myopia more effectively,which might be related to greater RMS_(h) and SFCh T.
基金Funded by the National Natural Science Foundation of China(No.50309004)
文摘The volumetric strain was categorized into elastic and plastic parts. The farmer camposed of axial and lateral strains is uniform and determined by Hooke's law ; however, the latter consisting of axial and lateral strains is a fuaction af thickness af shear band determined by grndieat-dependeat plasticity by cansidering the heterngeneity of quasi- brittle materials. The non- uniform lateral strain due to the fact that shear band was farmed in the middle of specimen was averaged within specimen to precisely assess the volumetric strain. Then, the analytical expression for volumetric strain was verified by comparison with two earlier experimental results for concrete and rack. Finally, a detailed parametric study was carried out to investigate effects of constitutive parameters ( shear band thickness, elastic and softening rnoduli ) and geometrical size of specimen( height and width of specimen ) on the volume dilatancy.
基金Foundation of Key Laboratory of Coast Civil Structure Safety (Tianjin University),Ministry of EducationChinese Program for New Century Excellent Talents in University+1 种基金Seed Foundation of Tianjin UniversitySeed Foundation of Xinjiang University
文摘Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical property of the L-shaped column. The load-displacement curve for the L-shaped column, the deflection and load-strain curves for the mono columns were obtained by the axial compression experiment. The results show that the L-shaped column exhibits a flexural-torsional buckling failure mode. The numerical simulation by the finite element analysis shows that the bearing capacity and failure mode are in accordance with those of the axial compression experiment and the feasi- bility of the finite element analysis is proved. For the calculation of the bearing capacity of the L-shaped column com- posed of concrete-filled square steel tubes, an analytical method is proposed based on the theory of the elastic stability and spatial truss model. The results of the analytical method are in good agreement with those of the axial compression experiment and the finite element analysis.
基金Financial support from the National Hi-tech Research and Development Program of China is much appreciated
文摘A stiffened cylindrical shell is normally used in refuge chambers of a coal mine. Based on the method of application and shape characteristics of a refuge chamber, we simplified its shell as an orthotropic cylinder. The basic buckling equation of the stiffened cylindrical shell under uniform axial compression was deduced by using a Donnell function. The factors affecting its buckling capacity were studied by theoretical analysis and numerical calculations. The results reveal that the torsional rigidity of the longitudinal stiffener had little effect on the buckling capacity of the shell and that the critical load of an externally stiffened cylindrical shell is higher than that of an internally stiffened cylindrical shell.
文摘Although smoothness, softness, and stiffness determine the physical and mechanical behavior of a fabric and the subjective assessment of quality when it is handled, the perceived comfort of clothing is more important to consumers. The sensations perceived from the contact of clothing with the skin can greatly influence our over-all state of comfort and one aspect of this is the unpleasant skin sensation of prickle. Surface prickle of fabrics can be a factor limiting the use of the coarser types of ramie in apparel. And the mechanical stimulus of fabric-evoked prickle underlies our discomfort to fabrics independent in the majority of cases of any chemical or the atopic status of the individual. It is known that the prickle of fabric can be reduced by fabric-finishing treatments, but the assessment of fabric prickle is often done subjectively. This is time consuming, and it is difficult to obtain reliable and reproducible results, since variability between subjects in their sensitivity to prickle, such as skin mechanical properties, effective density of nociceptors and the mood state of the individual. In order to find an objective method of measuring the physical properties of the stiff fiber ends protruding from the fabrics to predict prickle, axial compression bending tests were examined by using single ramie fiber. By comparing analysis, it is found that the critical compressing load (Pcr), the bending modulus (E) are the important parameters. The relationship of the critical load (Pcr) with the length of fiber (L) and the fineness of fiber (Nt) has been investigated.
基金Project supported by the National Natural Science Foudation of China (No. 50874095)The Na-tional Basic Research Program of China (973 Program)
文摘Based on the constancy hypothesis of material volume, the circumferential and radial stresses of a cylinder specimen are analyzed when the cylinder is subject to a loading along the axial direction. The circumferential and radial stress distribution is a power function of radius parameter when the constitutive relation of specimen material is orthotropic. The stress distribution is a quadratic function of radius parameter for transversely isotropic material. Along the cylinder axial line, the circumferential and radial stresses are maximum and equal to each other. In the circumference boundary surface, the radial stress is zero and the circumferential stress value is minimal. The failure theory of maximum tensile circumferential strain is applied to calculate the critical axial loading. The circumference-boundary-layer failure criterion of orthotropic cylinders is described with the Hill-Tsai strength theory. The obtained strength theory is related to axial stress and mechanical properties of specimen material and to the specimen axialdeformation strain rate and the change rate of strain rate.
文摘Post stall behaviors of a single stage compression system are studied theoretically and experimentally in this paper. A one dimensional nonlinear model, which is able to describe the dynamically post stall behaviors of the compression system, is applied to simulate the post stall behaviors digitally. The stall types, i.e. , rotating stall and surge, are determined. The variations of annular average parameters while the compression system goes into stall are also calculated exactly. The post stall behaviors are measured on the single stage compressor test rig. The measurement shows that rotating stall and surge appear under different conditions. On the basis of experiments, it is found that the post stall behaviors are influenced remarkably by some factors, such as rotation speeds, construction type and size of the exhaust duct. Good agreement between the simulation and experiments proves that this modeling technique is valid for simulating the post stall behaviors.
基金Projects(51278209,51478047)supported by the National Natural Science Foundation of ChinaProject(2014FJ-NCET-ZR03)supported by the Program for New Century Excellent Talents in Fujian Provincial Universities,China+1 种基金Project(JA13005)supported by the Incubation Program for Excellent Young Science and Technology Talents in Fujian Provincial Universities,ChinaProject(ZQN-PY110)supported by the Young and Middle-aged Academic Staff of Huaqiao University,China
文摘The static tests of nine traditional and bird beak square hollow structure(SHS) T-joints with different β values and connection types under axial compression at brace end were carried out. Experimental test schemes, failure modes of specimens, jack load-vertical displacement curves, jack load-deformation of chord and strain intensity distribution curves of joints were presented. The effects of β and connection types on axial compression property of joints were studied. The results show that the ultimate axial compression capacity of common bird beak SHS T-joints and diamond bird beak SHS T-joints is larger than that of traditional SHS T-joint specimens with big values of β. The ultimate axial compression capacity of diamond bird beak SHS T-joints is larger than that of common bird beak SHS T-joints. As β increases, the increase of the ultimate axial compression capacity of diamond bird beak SHS T-joints over that of common bird beak joints grows. The ultimate axial compression capacity and the initial axial stiffness of all kinds of joints increase as β increases, and the initial axial stiffness of the diamond bird beak SHS T-joints is the largest. The ductilities of common bird beak and diamond bird beak SHS T-joints increase as β increases, but the ductility of the traditional SHS T-joints decreases as β increases.
文摘An investigation is conducted on the static ultimate limit state assessment of ship hull plates with elastically restrained edges subjected to axial compression.Both material and geometric non-linearities were considered in finite element(FE)analysis.The initial geometric imperfection of the plate was considered,while the residual stress introduced by welding was not considered.The ultimate strength of simply supported ship hull plates compared well with the existing empirical formula to validate the correctness of the applied boundary conditions,initial imperfection and mesh size.The extensive FE calculations on the ultimate strength of ship hull plates with elastically restrained edges are presented.Then a new simple empirical formula for plate ultimate strength is developed,which includes the effect of the rotational restraint stiffness,rotational restraint stiffness,and aspect ratios.By applying the new formula and FE method to ship hull plates in real ships,a good coincidence of the results between these two methods is obtained,which indicates that the new formula can accurately predict the ultimate strength of ship hull plates with elastically restrained edges.
基金National Natural Science Foundation of China(50309004)
文摘The axial,lateral and circumferential strains were analyzed for a rock specimen subjected to shear failure in the form of a shear band bisecting the specimen in triaxial compression.Plastic deformation of the specimen stemmed from shear strain localization initiated at the peak shear stress.Beyond the onset of strain localization,the axial,lateral and circumferential strains were decomposed into two parts,respectively.One is the elas- tic strain described by general Hooke's law.The other is attributable to the plastic shear slips along shear band with a certain thickness dependent on the internal length of rock. The post-peak circumferential strain-axial strain curve of longer specimen is steeper than that of shorter specimen,as is consistent with the previous experiments.In elastic stage, the circumferential strain-axial strain curve exhibits nonlinear characteristic,as is in agreement with the previous experiment since confining pressure is loaded progressively until a certain value is reached.When the confining pressure is loaded completely,the circumferential strain-axial strain curve is linear in elastic and strain-softening stages.The predicted circumferential strain-axial strain curve in elastic and strain-softening stages agrees with the previous experiment.
基金Project(11102163)supported by the National Natural Science Foundation of ChinaProjects(JC20110218,JC20110260)supported by Foundation for Fundamental Research of Northwestern Polytechnical University,China
文摘Stability analyses of perfect and imperfect cylindrical shells under axial compression and torsion were presented. Finite element method for the stability analysis of perfect cylindrical shells was put forward through comparing critical loads and the first buckling modes with those obtained through theoretical analysis. Two typical initial defects, non-circularity and uneven thickness distribution, were studied. Critical loads decline with the increase of non-circularity, which exist in imperfect cylindrical shells under both axial compression and torsion. Non-circularity defect has no effect on the first buckling mode when cylindrical shell is under torsion. Unfortunately, it has a completely different buckling mode when cylindrical shell is under axial compression. Critical loads decline with the increase of thickness defect amplitude, which exist in imperfect cylindrical shells under both axial compression and torsion, too. A greater wave number is conducive to the stability of cylindrical shells. The first buckling mode of imperfect cylindrical shells under torsion maintains its original shape, but it changes with wave number when the cylindrical shell is under axial compression.
基金supported by Basic Scientific Research Funds of International Center for Bamboo and Rattan(1632016007)the National Science Foundation of China(31400519)
文摘Bamboo is a unique fiber-reinforced bio-composite with fibers embedded into a parenchyma cell matrix.We conducted axial compression tests on bamboo blocks prepared from bottom to top,and from inner to outer portions of the culm.The apparent Young’s modulus and compressive strength of whole thickness bamboo blocks exhibited slight increases with increasing height along the culm,due to slight increases of fiber volume fraction(Vf)from 28.4 to 30.4%.Other blocks showed a significant increase in apparent Young’s modulus and strength from the inner to outer part of the culm wall,mainly owing to a sharp increase of Vf from 17.1 to 59.8%.With a decrease of fiber fraction volume there was a transition from relatively brittle behavior to very ductile behavior in bamboo blocks.Results indicated that stiffness and strength of bamboo was primarily due to fiber in compression,and ductility of bamboo was provided by the parenchyma cell matrix acting as a natural fiber-reinforced composite.
文摘This paper provides a review of recent research advances and trends in the area of stability of unstiffened circular cylindrical shells subjected to general non-uniform axial compressive stresses.Only the more important and interesting aspects of the research,judged from a personal viewpoint,are discussed.They can be crudely classified into four categories:(1) shells subjected to non-uniform loads;(2) shells on discrete supports;(3) shells with intended cutouts/holes;and (4) shells with non-uniform settlements.
基金supported by National Key Technology R&D Program of the Eleventh Five-year Plan of China(Grant No.2011BAF09B03)National Natural Science Foundation of China(Grant No.51075360)
文摘Axial piston pump with pre-compression volume(PCV) has lower flow ripple in large scale of operating condition than the traditional one. However, there is lack of precise simulation model of the axial piston pump with PCV, so the parameters of PCV are difticult to be determined. A finite element simulation model for piston pump with PCV is built by considering the piston movement, the fluid characteristic(including fluid compressibility and viscosity) and the leakage flow rate. Then a test of the pump flow ripple called the secondary source method is implemented to validate the simulation model. Thirdly, by comparing results among the simulation results, test results and results from other publications at the same operating condition, the simulation model is validated and used in optimizing the axial piston pump with PCV. According to the pump flow ripples obtained by the simulation model with different PCV parameters, the flow ripple is the smallest when the PCV angle is 13~, the PCV volume is 1.3 ~ I0-4 m3 at such operating condition that the pump suction pressure is 2 MPa, the pump delivery pressure 15 MPa, the pump speed 1 000 r/min, the swash plate angle 13~. At the same time, the flow ripple can be reduced when the pump suction pressure is 2 MPa, the pump delivery pressure is 5 MPa,15 MPa, 22 MPa, pump speed is 400 r/min, 1 000 r/rain, 1 500 r/rain, the swash plate angle is ll~, 13~, 15~ and 17~, respectively. The finite element simulation model proposed provides a method for optimizing the PCV structure and guiding for designing a quieter axial piston pump.
文摘Based on minimum energy principle for plastic forming, tearing and buckling failures mechanisms are explored and criteria for them are developed by theoretical analysis and experiment. Combined with finite element software developed forming limit and effects of process parameters on failures are investigated and proper parameters for stable forming are determined. The results show that: 1) The failures and forming limit are mainly determined by geometry and materials parameters of tube blank, fillet radius or half conical angle of die. For the process under fillet die, there exists a maximum fillet radius within which no tearing failure happens, and a maximum radius and a minimum radius range within which no buckling failure happens. For the process under conical die, there exists a maximum and minimum half conical angle range within which no tearing and buckling failures occur. 2) For both forming processes, the higher the value of material strain hardening exponent or the lower the value of relative thickness, the more impossible for tearing and buckling failures to occur, and the larger the ranges of fillet radius and half conical angle. The experiment results verify the reliability and practicability of this research.