Numerical simulation are conducted to explore the characteristics of the axial inflow and related aerodynamic noise for a large-scale adjustable fan with the installation angle changing from−12°to 12°.In suc...Numerical simulation are conducted to explore the characteristics of the axial inflow and related aerodynamic noise for a large-scale adjustable fan with the installation angle changing from−12°to 12°.In such a range the maximum static(gauge)pressure at the inlet changes from−2280 Pa to 382 Pa,and the minimum static pressure decreases from−3389 Pa to−8000 Pa.As for the axial intermediate flow surface,one low pressure zone is located at the junction of the suction surface and the hub,another is located at the suction surface close to the casing position.At the outlet boundary,the low pressure is negative and decreases from−1716 Pa to−4589 Pa.The sound pressure level of the inlet and outlet noise tends to increase monotonously by 11.6 dB and 7.3 dB,respectively.The acoustic energy of discrete noise is always higher than that of broadband noise regardless of whether the inlet or outlet flow surfaces are considered.The acoustic energy ratio of discrete noise at the inlet tends to increase from 0.78 to 0.93,while at the outlet it first decreases from 0.79 to 0.73 and then increases to 0.84.展开更多
The details of unsteady flow field in small axial fans are described and the relationship between the internal flow char- acteristics and aerodynamic noise of small axial flow fans are explored in the manuscript. Firs...The details of unsteady flow field in small axial fans are described and the relationship between the internal flow char- acteristics and aerodynamic noise of small axial flow fans are explored in the manuscript. Firstly, the broadband noise model is introduced to calculate the distributions of broadband noise sources in fan’s internal flow field, and further fan’s internal flow characteristics affecting broadband noise sources are analyzed by the main distributions of broad- band noise sources. Secondly, the unsteady characteristics of vortex structure in fan’s internal flow field are analyzed by large eddy simulation, and FH-W acoustic model is introduced to calculate aerodynamic noise affected by the unsteady characteristics of vortex structure. Finally, Monitoring points are set up near and far field of small axial fans, at which sound pressure level and spectral characteristics are analyzed. The results show that broadband noise sources are mainly distributed at the tip clearance close to blade trailing edge and one third of chord length of blade trailing edge of small axial fans. The maximum sound power of broadband noise sources at the tip clearance is greater than that at blade trail- ing edge. Sound power level of broadband noise near one third of blade chord length of blade trailing edge is first in- creasing and then decreasing when the distance between radial planes and the center of fan hub increases. Fan’s internal flow characteristics affecting broadband noise sources are the tip leakage vortex and the trailing edge vortex shedding. The tip leakage vortices at the leading edge of blade tip first integrate and then break down, while vortex cores of the trailing edge vortex shedding gradually move from blade hub to one-third of blade chord length and then move to far field within a one-seventh of the rotation cycle. Within a flow passage of fan rotation period, sound pressure level of the monitoring points is relevant to the unsteady feature of vortex structure and the main bands of aerodynamic noise of monitor points are irrelevant to the unsteady feature of vortex structure, relating to the distance between the monitor points and fan. With the above distance increasing, the main bands of aerodynamic noise are widened and moved from the low bands to high bands. All conclusions in the paper will provide significant references for reducing the noise of small axial flow fans.展开更多
This article presents the flow mechanism analysis and experimental study of a forward-skewed impeller and a radial impeller in low pressure axial fan. The forward-skewed blade was obtained by the optimization design o...This article presents the flow mechanism analysis and experimental study of a forward-skewed impeller and a radial impeller in low pressure axial fan. The forward-skewed blade was obtained by the optimization design of the radial blade and CFD technique. Measurement of the two blades was carried out in aerodynamic and aeroacoustic performance. Compared to the radial blade, the forward-skewed blade has demonstrated the improvements in efficiency, total pressure ratio, Stable Operating Range (SOR) and less aerodynamic noise. Detailed flow measurement and computation were performed for outlet flow field for investigating the responsible flow mechanisms. The results show the forward-skewed blade can cause a spanwise redistribution of flow toward the blade mid-span and reduce tip loading. This results in reduced significantly total pressure loss near hub and shroud endwall region, despite the slight increase of total pressure loss at mid-span.展开更多
This paper presents an experimental investigation of effects of a kind of streamwise-grooved blade on the performance of an axial-flow fan. The flow field at 25% chord downstream from the trailing edge at hub was meas...This paper presents an experimental investigation of effects of a kind of streamwise-grooved blade on the performance of an axial-flow fan. The flow field at 25% chord downstream from the trailing edge at hub was measured using a 5-hole pressure probe at different mass-flow conditions. The fan performance of the groove blades was compared with that of the smooth blades. The measurement results indicate that: ( 1 ) the non-smooth blades increase mass flow of the fan at the same throttle conditions except a near stall condition; (2) the non-smooth blades reduce the relative total pressure loss in the rotor passage and increase the fan's total pressure rise at the test mass-flow conditions except the near stall condition; (3) Negative benefits are obtained at a near stall condition when the smooth blades are replaced by the non-smooth ones. The fan mass flow decreases 0.9% while the total-pressure rise decreases 2.4% at the near stall condition.展开更多
The constrained multi-objective multi-variable optimization of fans usually needs a great deal of computational fluid dynamics(CFD)calculations and is time-consuming.In this study,a new multi-model ensemble optimizati...The constrained multi-objective multi-variable optimization of fans usually needs a great deal of computational fluid dynamics(CFD)calculations and is time-consuming.In this study,a new multi-model ensemble optimization algorithm is proposed to tackle such an expensive optimization problem.The multi-variable and multi-objective optimization are conducted with a new flexible multi-objective infill criterion.In addition,the search direction is determined by the multi-model ensemble assisted evolutionary algorithm and the feature extraction by the principal component analysis is used to reduce the dimension of optimization variables.First,the proposed algorithm and other two optimization algorithms which prevail in fan optimizations were compared by using test functions.With the same number of objective function evaluations,the proposed algorithm shows a fast convergency rate on finding the optimal objective function values.Then,this algorithm was used to optimize the rotor and stator blades of a large axial fan,with the efficiencies as the objectives at three flow rates,the high,the design and the low flow rate.Forty-two variables were included in the optimization process.The results show that compared with the prototype fan,the total pressure efficiencies of the optimized fan at the high,the design and the low flow rate were increased by 3.35%,3.07%and 2.89%,respectively,after CFD simulations for 500 fan candidates with the constraint for the design pressure.The optimization results validate the effectiveness and feasibility of the proposed algorithm.展开更多
In this article, the low pressure axial flow fan with circumferential skewed rotor blade, including the radial blade, the forward-skewed blade and the backward-skewed blade, was studied with experimental methods. The ...In this article, the low pressure axial flow fan with circumferential skewed rotor blade, including the radial blade, the forward-skewed blade and the backward-skewed blade, was studied with experimental methods. The aerodynamic performance of the rotors was measured. At the design condition at outlet of the rotors, detailed flow measurements were performed with a five-hole probe and a Hot-Wire Anemometer (HWA). The results show that compared to the radial rotor, the forward-skewed rotor demonstrates a wider Stable Operating Range (SOR), is able to reduce the total pressure loss in the hub region and make main loading of blade accumulating in the mid-span region. There is a wider wake in the upper mid-span region of the forward-skewed rotor. Compared to the radial rotor, in the backward-skewed rotor there is higher total pressure loss near the hub and shroud regions and lower loss in the mid-span region. In addition, the velocity deficit in the wake is lower at mid-span of the backward-skewed rotor than the forward-skewed rotor.展开更多
Compared with single rotor small axial flow fans, dual-rotor small axial flow fans is better regarding the static characteristics. But the aerodynamic noise of dual-rotor small axial flow fans is worse than that of si...Compared with single rotor small axial flow fans, dual-rotor small axial flow fans is better regarding the static characteristics. But the aerodynamic noise of dual-rotor small axial flow fans is worse than that of single rotor small axial flow fans. In order to improve aerodynamic noise of dual-rotor small axial flow fans, the pre-stage blades with different perforation numbers are designed in this research. The RANS equations and the standard k-e turbulence model as well as the FW-H noise model are used to simulate the flow field within the fan. Then, the aerodynamic performance of the fans with different perforation number is compared and analyzed. The results show that: (1) Compared to the prototype fan, the noise of fans with perforation blades is reduced. Additionally, the noise of the fans decreases with the increase of the number of perforations. (2) The vorticity value in the trailing edge of the pre-stage blades of perforated fans is reduced. It is found that the vorticity value in the trailing edge of the pre-stage blades decreases with the increase of the number of perforations. (3) Compared to the prototype fan, the total pressure rising and efficiency of the fans with perforation blades drop slightly.展开更多
Four types of axial fans noise energy are measured and compared with prediction byvortex sheddying model(T.fukano). A correct factor is advised in case of large hub rotor ormore blades and big assemble angle.
基金supported by Key Research and Development Project of Shandong Province[2019GSF109084]Young Scholars Program of Shandong University[2018WLJH73].
文摘Numerical simulation are conducted to explore the characteristics of the axial inflow and related aerodynamic noise for a large-scale adjustable fan with the installation angle changing from−12°to 12°.In such a range the maximum static(gauge)pressure at the inlet changes from−2280 Pa to 382 Pa,and the minimum static pressure decreases from−3389 Pa to−8000 Pa.As for the axial intermediate flow surface,one low pressure zone is located at the junction of the suction surface and the hub,another is located at the suction surface close to the casing position.At the outlet boundary,the low pressure is negative and decreases from−1716 Pa to−4589 Pa.The sound pressure level of the inlet and outlet noise tends to increase monotonously by 11.6 dB and 7.3 dB,respectively.The acoustic energy of discrete noise is always higher than that of broadband noise regardless of whether the inlet or outlet flow surfaces are considered.The acoustic energy ratio of discrete noise at the inlet tends to increase from 0.78 to 0.93,while at the outlet it first decreases from 0.79 to 0.73 and then increases to 0.84.
文摘The details of unsteady flow field in small axial fans are described and the relationship between the internal flow char- acteristics and aerodynamic noise of small axial flow fans are explored in the manuscript. Firstly, the broadband noise model is introduced to calculate the distributions of broadband noise sources in fan’s internal flow field, and further fan’s internal flow characteristics affecting broadband noise sources are analyzed by the main distributions of broad- band noise sources. Secondly, the unsteady characteristics of vortex structure in fan’s internal flow field are analyzed by large eddy simulation, and FH-W acoustic model is introduced to calculate aerodynamic noise affected by the unsteady characteristics of vortex structure. Finally, Monitoring points are set up near and far field of small axial fans, at which sound pressure level and spectral characteristics are analyzed. The results show that broadband noise sources are mainly distributed at the tip clearance close to blade trailing edge and one third of chord length of blade trailing edge of small axial fans. The maximum sound power of broadband noise sources at the tip clearance is greater than that at blade trail- ing edge. Sound power level of broadband noise near one third of blade chord length of blade trailing edge is first in- creasing and then decreasing when the distance between radial planes and the center of fan hub increases. Fan’s internal flow characteristics affecting broadband noise sources are the tip leakage vortex and the trailing edge vortex shedding. The tip leakage vortices at the leading edge of blade tip first integrate and then break down, while vortex cores of the trailing edge vortex shedding gradually move from blade hub to one-third of blade chord length and then move to far field within a one-seventh of the rotation cycle. Within a flow passage of fan rotation period, sound pressure level of the monitoring points is relevant to the unsteady feature of vortex structure and the main bands of aerodynamic noise of monitor points are irrelevant to the unsteady feature of vortex structure, relating to the distance between the monitor points and fan. With the above distance increasing, the main bands of aerodynamic noise are widened and moved from the low bands to high bands. All conclusions in the paper will provide significant references for reducing the noise of small axial flow fans.
基金the National Natural Science Foundation of China (Grant No.50406017)
文摘This article presents the flow mechanism analysis and experimental study of a forward-skewed impeller and a radial impeller in low pressure axial fan. The forward-skewed blade was obtained by the optimization design of the radial blade and CFD technique. Measurement of the two blades was carried out in aerodynamic and aeroacoustic performance. Compared to the radial blade, the forward-skewed blade has demonstrated the improvements in efficiency, total pressure ratio, Stable Operating Range (SOR) and less aerodynamic noise. Detailed flow measurement and computation were performed for outlet flow field for investigating the responsible flow mechanisms. The results show the forward-skewed blade can cause a spanwise redistribution of flow toward the blade mid-span and reduce tip loading. This results in reduced significantly total pressure loss near hub and shroud endwall region, despite the slight increase of total pressure loss at mid-span.
基金The authors would like to acknowledge National Natural Science Foundation of China for the support projects Grant No.50376002.
文摘This paper presents an experimental investigation of effects of a kind of streamwise-grooved blade on the performance of an axial-flow fan. The flow field at 25% chord downstream from the trailing edge at hub was measured using a 5-hole pressure probe at different mass-flow conditions. The fan performance of the groove blades was compared with that of the smooth blades. The measurement results indicate that: ( 1 ) the non-smooth blades increase mass flow of the fan at the same throttle conditions except a near stall condition; (2) the non-smooth blades reduce the relative total pressure loss in the rotor passage and increase the fan's total pressure rise at the test mass-flow conditions except the near stall condition; (3) Negative benefits are obtained at a near stall condition when the smooth blades are replaced by the non-smooth ones. The fan mass flow decreases 0.9% while the total-pressure rise decreases 2.4% at the near stall condition.
基金support of National Science and Technology Major Project(2017-11-0007-0021)。
文摘The constrained multi-objective multi-variable optimization of fans usually needs a great deal of computational fluid dynamics(CFD)calculations and is time-consuming.In this study,a new multi-model ensemble optimization algorithm is proposed to tackle such an expensive optimization problem.The multi-variable and multi-objective optimization are conducted with a new flexible multi-objective infill criterion.In addition,the search direction is determined by the multi-model ensemble assisted evolutionary algorithm and the feature extraction by the principal component analysis is used to reduce the dimension of optimization variables.First,the proposed algorithm and other two optimization algorithms which prevail in fan optimizations were compared by using test functions.With the same number of objective function evaluations,the proposed algorithm shows a fast convergency rate on finding the optimal objective function values.Then,this algorithm was used to optimize the rotor and stator blades of a large axial fan,with the efficiencies as the objectives at three flow rates,the high,the design and the low flow rate.Forty-two variables were included in the optimization process.The results show that compared with the prototype fan,the total pressure efficiencies of the optimized fan at the high,the design and the low flow rate were increased by 3.35%,3.07%and 2.89%,respectively,after CFD simulations for 500 fan candidates with the constraint for the design pressure.The optimization results validate the effectiveness and feasibility of the proposed algorithm.
基金supported by the National Natural Science Foundation of China (Grant No.50406017).
文摘In this article, the low pressure axial flow fan with circumferential skewed rotor blade, including the radial blade, the forward-skewed blade and the backward-skewed blade, was studied with experimental methods. The aerodynamic performance of the rotors was measured. At the design condition at outlet of the rotors, detailed flow measurements were performed with a five-hole probe and a Hot-Wire Anemometer (HWA). The results show that compared to the radial rotor, the forward-skewed rotor demonstrates a wider Stable Operating Range (SOR), is able to reduce the total pressure loss in the hub region and make main loading of blade accumulating in the mid-span region. There is a wider wake in the upper mid-span region of the forward-skewed rotor. Compared to the radial rotor, in the backward-skewed rotor there is higher total pressure loss near the hub and shroud regions and lower loss in the mid-span region. In addition, the velocity deficit in the wake is lower at mid-span of the backward-skewed rotor than the forward-skewed rotor.
基金supported by National Natural Science Foundation of China(No.51276172)
文摘Compared with single rotor small axial flow fans, dual-rotor small axial flow fans is better regarding the static characteristics. But the aerodynamic noise of dual-rotor small axial flow fans is worse than that of single rotor small axial flow fans. In order to improve aerodynamic noise of dual-rotor small axial flow fans, the pre-stage blades with different perforation numbers are designed in this research. The RANS equations and the standard k-e turbulence model as well as the FW-H noise model are used to simulate the flow field within the fan. Then, the aerodynamic performance of the fans with different perforation number is compared and analyzed. The results show that: (1) Compared to the prototype fan, the noise of fans with perforation blades is reduced. Additionally, the noise of the fans decreases with the increase of the number of perforations. (2) The vorticity value in the trailing edge of the pre-stage blades of perforated fans is reduced. It is found that the vorticity value in the trailing edge of the pre-stage blades decreases with the increase of the number of perforations. (3) Compared to the prototype fan, the total pressure rising and efficiency of the fans with perforation blades drop slightly.
文摘Four types of axial fans noise energy are measured and compared with prediction byvortex sheddying model(T.fukano). A correct factor is advised in case of large hub rotor ormore blades and big assemble angle.