Axial-flux permanent magnet synchronous machine(AFPMSM)enjoys the merits of high torque density and high efficiency,which make it one good candidate in the direct-drive application.The AFPMSM is usually analyzed based...Axial-flux permanent magnet synchronous machine(AFPMSM)enjoys the merits of high torque density and high efficiency,which make it one good candidate in the direct-drive application.The AFPMSM is usually analyzed based on the three-dimensional finite element method(3D FEM)due to its three-dimensional magnetic field distribution.However,the 3D FEM suffers large amount of calculation,time-consuming and is not suitable for the optimization of AFPMSM.Addressing this issue,a multi-layer quasi three-dimensional equivalent model of the AFPMSM is investigated in this paper,which could take the end leakage into consideration.Firstly,the multi-layer quasi three-dimensional equivalent model of the AFPMSM with single stator and single rotor is derived in details,including the equivalent processes and conversions of structure dimensions,motion conditions and electromagnetic parameters.Then,to consider the influence of end leakage on the performance,a correction factor is introduced in the multi-layer quasi three-dimensional equivalent model.Finally,the proposed multi-layer quasi three-dimensional equivalent model is verified by the 3D FEM based on an AFPMSM under different structure parameters.It demonstrates that the errors of flux linkage and average torque obtained by the multi-layer quasi three-dimensional equivalent model and 3D FEM are only around 2%although the structure parameters of the AFPMSM are varied.Besides,the computation time of one case based on the multi-layer quasi three-dimensional equivalent model is only 6 min,which is much less than that of the 3D FEM,1.8 h,under the same conditions.Thus,the proposed multi-layer quasi three-dimensional equivalent model could be used to optimize the AFPMSM and much time could be saved by this method compared with the 3D FEM.展开更多
This paper deals with the investigation of the behavior of a low speed, dual rotor-single coreless stator, axial flux permanent magnet synchronous machine for small power applications. Firstly, with the use of nonline...This paper deals with the investigation of the behavior of a low speed, dual rotor-single coreless stator, axial flux permanent magnet synchronous machine for small power applications. Firstly, with the use of nonlinear 3D FEM electromagnetic analysis, four models with different magnet topologies are designed, simulated and compared. With criteria such as output power, power factor and torque ripple, the best performing model is selected and a further investigation, regarding the effect of the disk rotor material on the behavior of the machine, is conducted. The simulation results show how the different types of commercially available steel types affect the magnetic field and the performance of the machine.展开更多
The magnetic flux in a permanent magnet transverse flux generator(PMTFG) is three-dimensional(3D), therefore, its efficacy is evaluated using 3D magnetic field analysis. Although the 3D finite-element method(FEM) is h...The magnetic flux in a permanent magnet transverse flux generator(PMTFG) is three-dimensional(3D), therefore, its efficacy is evaluated using 3D magnetic field analysis. Although the 3D finite-element method(FEM) is highly accurate and reliable for machine simulation, it requires a long computation time, which is crucial when it is to be used in an iterative optimization process. Therefore, an alternative to 3DFEM is required as a rapid and accurate analytical technique. This paper presents an analytical model for PMTFG analysis using winding function method. To obtain the air gap MMF distribution, the excitation magneto-motive force(MMF) and the turn function are determined based on certain assumptions. The magnetizing inductance, flux density, and back-electro-magnetomotive force of the winding are then determined. To assess the accuracy of the proposed method, the analytically calculated parameters of the generator are compared to those obtained by a 3D-FEM. The presented method requires significantly shorter computation time than the 3D-FEM with comparable accuracy.展开更多
In this paper, a design method for ocean wave permanent magnet synchronous generator(PMSG)is proposed with new performance criteria to obtain better output performance at the cost of less permanent magnet material. Be...In this paper, a design method for ocean wave permanent magnet synchronous generator(PMSG)is proposed with new performance criteria to obtain better output performance at the cost of less permanent magnet material. Besides, a simple equivalent analytical geometry method is put forward to calculate the sizes of permanent magnets. Based on geometric and electromagnetic models, four types of rotor structures are compared, i.e., embedded, tangential, tile surface mount and convex surface mount structures. The designs and comparisons of machine are performed with the same permanent magnet volume. Moreover, the influences of mechanical pole-arc coefficient of tile surface mount PMSG on electrical efficiency, output power, material corrosion, core loss, and torque ripple are investigated. Finite-element analysis method is applied to verify the results using Ansoft/Maxwell.展开更多
The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, th...The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, the rotor speed is set at an optimal point for different wind speeds. As a result of which, the tip speed ratio reaches an optimal point, mechanical power coefficient is maximized, and wind turbine produces its maximum power and mechanical torque. Then, the maximum mechanical torque is tracked using electromechanical torque. In this technique, tracking error integral of maximum mechanical torque, the error, and the derivative of error are used as state variables. During changes in wind speed, sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking(MPPT). In this method, the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal. The result of the second order integral in this model includes control signal integrity, full chattering attenuation, and prevention from large fluctuations in the power generator output. The simulation results, calculated by using MATLAB/m-file software, have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator(PMSG).展开更多
With the development of aviation electrification,higher demands for electrical machines are put forward in aircraft electric propulsion systems.The aircraft electric propulsion requirements and propulsion motor featur...With the development of aviation electrification,higher demands for electrical machines are put forward in aircraft electric propulsion systems.The aircraft electric propulsion requirements and propulsion motor features are analyzed in this paper.Comparing with conventional PM machines,ironless stator axial flux permanent magnet(AFPM)machine topologies with Litz wire windings allow designs with higher compactness,lightness and efficiency,which are suitable for high-frequency and high-power density applications.Based on the motor requirements and constraints of aircraft electric propulsion systems,this paper investigates a high-power 1 MW multi-stack ironless stator AFPM machine,which is composed of four 250kW modular motors by stacking in axial.The design guidelines and special attentions are presented,in term of electromagnetic,thermal,and mechanical performance for the high-frequency coils and Halbach-array PM rotor.Finally,an ironless stator AFPM motor is manufactured,tested and evaluated with the consideration of cost and processing cycle.The results show that the output power is up to 53.8kW with 95%efficiency at 9000r/min at this stage.The proposed ironless stator AFPM machine with oil immersed forced cooling proves to be a favorable candidate for application in electric aircraft as propulsion motors.展开更多
With the increasing requirement for the mechanical vibration and acoustic noise of the permanent magnet synchronous motor(PMSM)drive system,the demand for cogging torque reduction of PMSM has been considerably increas...With the increasing requirement for the mechanical vibration and acoustic noise of the permanent magnet synchronous motor(PMSM)drive system,the demand for cogging torque reduction of PMSM has been considerably increased.To solve the problem of oversized cogging torque of axial flux PMSM,a rotor topology with hybrid permanent magnet is proposed to weaken the cogging torque.Firstly,the expression of the cogging torque of the axial flux motor is derived,and the influence of the pole-arc ratio of the permanent magnet on the cogging torque is analyzed.Secondly,the rotor structure with hybrid permanent magnet is adopted to reduce the cogging torque.According to the analytical analysis,the constraints of the size and pole-arc ratio between the hybrid permanent magnets are obtained,and the two permanent magnets related to the minimum cogging torque are determined.And the analysis results are verified by the finite element simulation.Furthermore,the motor performance with and without the hybrid permanent magnet is compared with each other.Finally,the cogging torque is significantly reduced by adopting a rotor structure with hybrid permanent magnets.展开更多
This paper studied the direct-drive permanent magnet synchronous machine (permanent magnet synchronous generator, PMSG) Chopper optimal topology and resistance value. Compared the different Chopper circuit low voltage...This paper studied the direct-drive permanent magnet synchronous machine (permanent magnet synchronous generator, PMSG) Chopper optimal topology and resistance value. Compared the different Chopper circuit low voltage ride-through capability in the same grid fault conditions in simulation. This paper computes the dump resistance ceiling according to the power electronic devices and over-current capability. Obtaining the dump resistance low limit according to the temperature resistance allows, and calculating the optimal value by drop voltage in the DC-Bus during the fault. The feasibility of the proposed algorithm is verified by simulation results.展开更多
This paper presents an analytical method to design the high-efficiency surface permanent magnet synchronous motor(SPMSM)or generator(SPMSG).The air-gap and permanent magnet size can be approximately determined based o...This paper presents an analytical method to design the high-efficiency surface permanent magnet synchronous motor(SPMSM)or generator(SPMSG).The air-gap and permanent magnet size can be approximately determined based on our mathematics model,which is the most important part of SPMSM design.From our method,we can know that motor’s power out torque is related to the torque angle that we selected in our design and it affects the air-gap and permanent magnet size.If we choose a low torque angle,the motor or generator’s overload power handing capability will increase.The embrace value has a vital place in designing a motor or generator due to its effects on air gap flux density,cogging torque,efficiency and so on.In order to avoid the knee effect,the working point of the permanent magnet we selected in the design should be bigger than 0.5.The developed 36 slots,4 poles,surface mound permanent generator is proposed.The corresponding finite element analysis(FEA)model is built based on our design method.Structure optimization includes stator and rotor structure size,permanent magnet size,magnetic bridge and air gap length which are analyzed and simulated by ANSYS Maxwell 2D FEA.Thermal analysis is conducted,and the housing of the alternator is designed.The alternator prototype is fabricated and tested based on our design.展开更多
This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in considerati...This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in consideration and the entire simulation is carried in Matlab/Simulink environment. The rated power for the generator is fixed at 1.5 KW and number of pole at 20. It is observed under low wind speed of6 m/s, a turbine having approximately1 mof radius and2.6 mof height develops 150 Nm mechanical torque that can generate power up to 1.5 KW. The generator is designed using modeling tool and is fabricated. The fabricated generator is tested in the laboratory with the simulation result for the error analysis. The range of error is about 5%-27% for the same output power value. The limitations and possible causes for error are presented and discussed.展开更多
This paper investigates how to address the chaos problem in a permanent magnet synchronous generator(PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make oper...This paper investigates how to address the chaos problem in a permanent magnet synchronous generator(PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make operating stable;the advantage of this method is that it can only be applied to one state of the wind turbine system. The use of the genetic algorithms to estimate the optimal parameter values of the wind turbine leads to maximization of the power generation.Moreover, some simulation results are included to visualize the effectiveness and robustness of the proposed method.展开更多
The stator flux and electromagnetic torque observation is the basis of direct torque controlled permanent magnet synchronous motor( PMSM) drive system. However,the traditional stator flux observer based on voltage mod...The stator flux and electromagnetic torque observation is the basis of direct torque controlled permanent magnet synchronous motor( PMSM) drive system. However,the traditional stator flux observer based on voltage model is affected by integral initial values and integral drift,that based on current model is affected by the parameters of PMSM,so a new stator flux observation method is proposed based on an improved secondorder generalized integrator( SOGI). Compared to the stator flux observation method based on the conventional SOGI,the proposed method can not only overcome the influence of integral initial values and integral drift,but also completely eliminate the DC offset's influence. Therefore,the observation accuracy of stator flux is further improved. The simulation and experimental results both show that the proposed method has a higher stator flux and electromagnetic torque observation precision.展开更多
Conventional fractional slot concentrated winding three-phase axial flux permanent magnet machines have an abundance of armature reaction magnetic field harmonics which deteriorate the torque performance of the machin...Conventional fractional slot concentrated winding three-phase axial flux permanent magnet machines have an abundance of armature reaction magnetic field harmonics which deteriorate the torque performance of the machine.This paper presents a double-stator dislocated axial flux permanent magnet machine with combined wye-delta winding.A wye-delta(Y-△)winding connection method is designed to eliminate the 6 th ripple torque generated by air gap magnetic field harmonics.Then,the accurate subdomain method is adopted to acquire the no-load and armature magnetic fields of the machine,respectively,and the magnetic field harmonics and torque performance of the designed machine are analyzed.Finally,a 6 k W,4000 r/min,18-slot/16-pole axial flux permanent magnet machine is designed.The finite element simulation results show that the proposed machine can effectively eliminate the 6 th ripple torque and greatly reduce the torque ripple while the average torque is essentially identical to that of the conventional three-phase machines with wye-winding connection.展开更多
The three-dimensional(3D)analytical model of the magnetic field in an Axial Flux Permanent Magnets Maglev Motor(AFPMMM)is proposed and investigated the influence of the structural parameters on electromagnetic charact...The three-dimensional(3D)analytical model of the magnetic field in an Axial Flux Permanent Magnets Maglev Motor(AFPMMM)is proposed and investigated the influence of the structural parameters on electromagnetic characteristics.Firstly,the topology and working principle of the AFPMMM is introduced,and the model is transferred into a mathematical model in 3D cartesian coordinate.Then,the volume integral method and equivalent current sheets model is applied to find the 3D magnetic field distribution function of Halbach rotor.A unified form expression can be obtained by two dimensional discrete fourier transform(2-D DFT)is applied on the 3D magnetic field distribution function.Thirdly,the conductive and nonconductive regions of AFPMMM will be formulated by the second order vector potential(SOVP)to built the 3D analytic model.The expression of the lift force,torque and power losses was derived.Besides,the relationship between electromagnetic characteristics and structural parameters of the AFPMMM were analyzed based on 3D analytic model and validated using the 3D finite element analysis(FEA).Finally,the experiments based on a small scale prototype are carried out to verify the analytical results.展开更多
Aiming at the difficulty of setting the weight coefficient in the value function of model predictive torque control(MPTC)for permanent magnet synchronous motor(PMSM)driven by three-level inverter,a fine-division model...Aiming at the difficulty of setting the weight coefficient in the value function of model predictive torque control(MPTC)for permanent magnet synchronous motor(PMSM)driven by three-level inverter,a fine-division model predictive flux control(MPFC)method is proposed.First,establish a mathematical model between the motor torque and the stator flux linkage according to the mathematical equations of PMSM.Thus,the control of the motor torque and stator flux linkage in the MPTC is transformed into the control of a single stator flux linkage vector,omitting the cumbersome weight setting process in the traditional MPTC.The midpoint potential control strategy is proposed,which uses the characteristics of redundant small vectors to balance the midpoint potential.After that,a fine-division strategy is proposed,which effectively reduces the number of candidate vectors and the computational burden of the system.Finally,the proposed MPFC is compared with MPTC by simulation.The results show that the proposed fine-division MPFC effectively reduces the system calculation,and has the advantages of simple principle and better dynamic and steady-state control performance.The feasibility of the control strategy is verified.展开更多
Recently, many optimal designs for axial flux permanent magnet (AFPM) motors were performed based on finite- element (FE) analysis. Most of the models are based on reduction of 3D problem to 2D problem which is not ac...Recently, many optimal designs for axial flux permanent magnet (AFPM) motors were performed based on finite- element (FE) analysis. Most of the models are based on reduction of 3D problem to 2D problem which is not accurate for design aspects. This paper describes an accurate electromagnetic analysis of a surface mounted, 28 pole AFPM with concentrated stator winding. The AFPM is modeled with three-dimensional finite-element method. This model in-cludes all geometrical and physical characteristics of the machine components. Using this accurate modeling makes it possible to obtain demanded signals for a very high precision analysis. Magnetic flux density, back-EMF, magnetic axial force and cogging torque of the motor are simulated using FLUX-3D V10.3.2. Meanwhile, the model is paramet-ric and can be used for design process and sensitivity analysis.展开更多
In order to reduce the cogging torque, this paper investigates the influence of some parameters on the cogging torque developed by directly driven permanent magnet synchronous wind generators. Based on the remanent ma...In order to reduce the cogging torque, this paper investigates the influence of some parameters on the cogging torque developed by directly driven permanent magnet synchronous wind generators. Based on the remanent magnetic flux densities, the cogging torque is computed by using finite element method. It is shown that many parameters have influence on cogging torque and the slot and pole number combination has a significant effect on cogging torque. A simple factor has been introduced to indicate the effect of the slot and pole number combination. Some practical experience to reduce the cogging torque was applied to 2 MW three phase permanent magnet synchronous generator at rated speed of 37.5 rpm for wind energy conversion. The simulation and experiment results verify the effect of the proposed method.展开更多
This paper presents calculations of the varying inductances profile for a synchronous linear surface mounted permanent magnet generator in an ABC reference system. Calculations are performed by utilizing the reluctanc...This paper presents calculations of the varying inductances profile for a synchronous linear surface mounted permanent magnet generator in an ABC reference system. Calculations are performed by utilizing the reluctance term, known from analytic calculations and finite element method simulations. With the inductance term identified, the voltage difference between the generator’s no load and load voltage can be calculated and an external circuit can be designed for optimal use of the generator. Two different operation intervals of the linear generator are considered and the results are discussed. The result indicates that time costly finite element simulations can be replaced with simple analytical calculations for a surface mounted permanent magnet linear generator.展开更多
This paper describes the conductor eddy current loss that occurs in a permanent magnet type synchronous motor with a distributed winding stator using a rectangular copper wire designed for mild hybrid system applicati...This paper describes the conductor eddy current loss that occurs in a permanent magnet type synchronous motor with a distributed winding stator using a rectangular copper wire designed for mild hybrid system applications for small vehicles.Compared with the conventional round wire inserter method,the space factor can be improved and the coil-end length can be shortened by applying a so-called hairpin windings using a pre-formed into hairpin shape of bar conductor,and as a result,DC current resistance of the armature winding can be reduced.However,since the conductor cross-sectional area tends to increases,the conductor eddy current loss generated by the space harmonics linkage becomes too large to ignore.In order to study the reduction of the conductor eddy current loss,it is important to visualize the spatial leakage flux distribution which causes loss and finely analyze how the magnetic path is formed.Therefore,analysis of the conductor eddy current loss distribution generated in the bar-wound conductor is performed using the CAE model that faithfully reproduces the coil-end shape of the actual machine.Furthermore,it was qualitatively clarified what ratio of conductor eddy current loss at various driving points.Finally,the results of preliminary study on reduction of conductor eddy current loss are reported.展开更多
In recent years, with the growth of wind energy resources,the capability of wind farms to damp low-frequency oscillations(LFOs) has provided a notable advantage for the stabilityenhancement of the modern power grid. M...In recent years, with the growth of wind energy resources,the capability of wind farms to damp low-frequency oscillations(LFOs) has provided a notable advantage for the stabilityenhancement of the modern power grid. Meanwhile, owingto variations in the power system operating point (OP), thedamping characteristics of LFOs may be affected adversely. Inthis respect, this paper presents a coordinated robust proportional-integral-derivative (PID) based damping control approachfor permanent magnet synchronous generators (PMSGs)to effectively stabilize LFOs, while considering power system operationaluncertainties in the form of a polytopic model constructedby linearizing the power system under a given set ofOPs. The proposed approach works by modulating the DC-linkvoltage control loop of the grid-side converter (GSC) via a supplementaryPID controller, which is synthesized by transformingthe design problem into H-infinity static output feedback(SOF) control methodology. The solution of H-infinity SOF controlproblem involves satisfying linear matrix inequality (LMI)constraints based on the parameter-dependent Lyapunov functionto ensure asymptotic stability such that the minimal H-infinityperformance objective is simultaneously accomplished forthe entire polytope. The coordinated damping controllers forthe multiple wind farms are then designed sequentially by usingthe proposed approach. Eigenvalue analysis confirms the improveddamping characteristics of the closed-loop system forseveral representative OPs. Afterward, the simulation results, includingthe performance comparison with existing approaches,validate the higher robustness of the proposed approach for awide range of operating scenarios.展开更多
基金the National Natural Science Foundation of China Grant No.52007055 and in part by the Fundamental Research Funds for the Central Universities under Grant 531118010386.
文摘Axial-flux permanent magnet synchronous machine(AFPMSM)enjoys the merits of high torque density and high efficiency,which make it one good candidate in the direct-drive application.The AFPMSM is usually analyzed based on the three-dimensional finite element method(3D FEM)due to its three-dimensional magnetic field distribution.However,the 3D FEM suffers large amount of calculation,time-consuming and is not suitable for the optimization of AFPMSM.Addressing this issue,a multi-layer quasi three-dimensional equivalent model of the AFPMSM is investigated in this paper,which could take the end leakage into consideration.Firstly,the multi-layer quasi three-dimensional equivalent model of the AFPMSM with single stator and single rotor is derived in details,including the equivalent processes and conversions of structure dimensions,motion conditions and electromagnetic parameters.Then,to consider the influence of end leakage on the performance,a correction factor is introduced in the multi-layer quasi three-dimensional equivalent model.Finally,the proposed multi-layer quasi three-dimensional equivalent model is verified by the 3D FEM based on an AFPMSM under different structure parameters.It demonstrates that the errors of flux linkage and average torque obtained by the multi-layer quasi three-dimensional equivalent model and 3D FEM are only around 2%although the structure parameters of the AFPMSM are varied.Besides,the computation time of one case based on the multi-layer quasi three-dimensional equivalent model is only 6 min,which is much less than that of the 3D FEM,1.8 h,under the same conditions.Thus,the proposed multi-layer quasi three-dimensional equivalent model could be used to optimize the AFPMSM and much time could be saved by this method compared with the 3D FEM.
文摘This paper deals with the investigation of the behavior of a low speed, dual rotor-single coreless stator, axial flux permanent magnet synchronous machine for small power applications. Firstly, with the use of nonlinear 3D FEM electromagnetic analysis, four models with different magnet topologies are designed, simulated and compared. With criteria such as output power, power factor and torque ripple, the best performing model is selected and a further investigation, regarding the effect of the disk rotor material on the behavior of the machine, is conducted. The simulation results show how the different types of commercially available steel types affect the magnetic field and the performance of the machine.
文摘The magnetic flux in a permanent magnet transverse flux generator(PMTFG) is three-dimensional(3D), therefore, its efficacy is evaluated using 3D magnetic field analysis. Although the 3D finite-element method(FEM) is highly accurate and reliable for machine simulation, it requires a long computation time, which is crucial when it is to be used in an iterative optimization process. Therefore, an alternative to 3DFEM is required as a rapid and accurate analytical technique. This paper presents an analytical model for PMTFG analysis using winding function method. To obtain the air gap MMF distribution, the excitation magneto-motive force(MMF) and the turn function are determined based on certain assumptions. The magnetizing inductance, flux density, and back-electro-magnetomotive force of the winding are then determined. To assess the accuracy of the proposed method, the analytically calculated parameters of the generator are compared to those obtained by a 3D-FEM. The presented method requires significantly shorter computation time than the 3D-FEM with comparable accuracy.
基金Supported by the National Natural Science Foundation of China(No.51577124)Tianjin Research Program of Application Foundation and Advanced Technology(No.15JCZDJC32100)
文摘In this paper, a design method for ocean wave permanent magnet synchronous generator(PMSG)is proposed with new performance criteria to obtain better output performance at the cost of less permanent magnet material. Besides, a simple equivalent analytical geometry method is put forward to calculate the sizes of permanent magnets. Based on geometric and electromagnetic models, four types of rotor structures are compared, i.e., embedded, tangential, tile surface mount and convex surface mount structures. The designs and comparisons of machine are performed with the same permanent magnet volume. Moreover, the influences of mechanical pole-arc coefficient of tile surface mount PMSG on electrical efficiency, output power, material corrosion, core loss, and torque ripple are investigated. Finite-element analysis method is applied to verify the results using Ansoft/Maxwell.
文摘The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, the rotor speed is set at an optimal point for different wind speeds. As a result of which, the tip speed ratio reaches an optimal point, mechanical power coefficient is maximized, and wind turbine produces its maximum power and mechanical torque. Then, the maximum mechanical torque is tracked using electromechanical torque. In this technique, tracking error integral of maximum mechanical torque, the error, and the derivative of error are used as state variables. During changes in wind speed, sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking(MPPT). In this method, the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal. The result of the second order integral in this model includes control signal integrity, full chattering attenuation, and prevention from large fluctuations in the power generator output. The simulation results, calculated by using MATLAB/m-file software, have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator(PMSG).
基金This work was supported in part by National Natural Science Foundation for Excellent Young Scholar of China under Award 51622704,in part by Jiangsu provincial key research and development project under Award BE2017160。
文摘With the development of aviation electrification,higher demands for electrical machines are put forward in aircraft electric propulsion systems.The aircraft electric propulsion requirements and propulsion motor features are analyzed in this paper.Comparing with conventional PM machines,ironless stator axial flux permanent magnet(AFPM)machine topologies with Litz wire windings allow designs with higher compactness,lightness and efficiency,which are suitable for high-frequency and high-power density applications.Based on the motor requirements and constraints of aircraft electric propulsion systems,this paper investigates a high-power 1 MW multi-stack ironless stator AFPM machine,which is composed of four 250kW modular motors by stacking in axial.The design guidelines and special attentions are presented,in term of electromagnetic,thermal,and mechanical performance for the high-frequency coils and Halbach-array PM rotor.Finally,an ironless stator AFPM motor is manufactured,tested and evaluated with the consideration of cost and processing cycle.The results show that the output power is up to 53.8kW with 95%efficiency at 9000r/min at this stage.The proposed ironless stator AFPM machine with oil immersed forced cooling proves to be a favorable candidate for application in electric aircraft as propulsion motors.
基金supported by the Natural Science Foundation of Hubei Province(No.2019 CFB759)。
文摘With the increasing requirement for the mechanical vibration and acoustic noise of the permanent magnet synchronous motor(PMSM)drive system,the demand for cogging torque reduction of PMSM has been considerably increased.To solve the problem of oversized cogging torque of axial flux PMSM,a rotor topology with hybrid permanent magnet is proposed to weaken the cogging torque.Firstly,the expression of the cogging torque of the axial flux motor is derived,and the influence of the pole-arc ratio of the permanent magnet on the cogging torque is analyzed.Secondly,the rotor structure with hybrid permanent magnet is adopted to reduce the cogging torque.According to the analytical analysis,the constraints of the size and pole-arc ratio between the hybrid permanent magnets are obtained,and the two permanent magnets related to the minimum cogging torque are determined.And the analysis results are verified by the finite element simulation.Furthermore,the motor performance with and without the hybrid permanent magnet is compared with each other.Finally,the cogging torque is significantly reduced by adopting a rotor structure with hybrid permanent magnets.
文摘This paper studied the direct-drive permanent magnet synchronous machine (permanent magnet synchronous generator, PMSG) Chopper optimal topology and resistance value. Compared the different Chopper circuit low voltage ride-through capability in the same grid fault conditions in simulation. This paper computes the dump resistance ceiling according to the power electronic devices and over-current capability. Obtaining the dump resistance low limit according to the temperature resistance allows, and calculating the optimal value by drop voltage in the DC-Bus during the fault. The feasibility of the proposed algorithm is verified by simulation results.
文摘This paper presents an analytical method to design the high-efficiency surface permanent magnet synchronous motor(SPMSM)or generator(SPMSG).The air-gap and permanent magnet size can be approximately determined based on our mathematics model,which is the most important part of SPMSM design.From our method,we can know that motor’s power out torque is related to the torque angle that we selected in our design and it affects the air-gap and permanent magnet size.If we choose a low torque angle,the motor or generator’s overload power handing capability will increase.The embrace value has a vital place in designing a motor or generator due to its effects on air gap flux density,cogging torque,efficiency and so on.In order to avoid the knee effect,the working point of the permanent magnet we selected in the design should be bigger than 0.5.The developed 36 slots,4 poles,surface mound permanent generator is proposed.The corresponding finite element analysis(FEA)model is built based on our design method.Structure optimization includes stator and rotor structure size,permanent magnet size,magnetic bridge and air gap length which are analyzed and simulated by ANSYS Maxwell 2D FEA.Thermal analysis is conducted,and the housing of the alternator is designed.The alternator prototype is fabricated and tested based on our design.
文摘This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in consideration and the entire simulation is carried in Matlab/Simulink environment. The rated power for the generator is fixed at 1.5 KW and number of pole at 20. It is observed under low wind speed of6 m/s, a turbine having approximately1 mof radius and2.6 mof height develops 150 Nm mechanical torque that can generate power up to 1.5 KW. The generator is designed using modeling tool and is fabricated. The fabricated generator is tested in the laboratory with the simulation result for the error analysis. The range of error is about 5%-27% for the same output power value. The limitations and possible causes for error are presented and discussed.
基金Project supported by the CMEP-TASSILI Project(Grant No.14MDU920)
文摘This paper investigates how to address the chaos problem in a permanent magnet synchronous generator(PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make operating stable;the advantage of this method is that it can only be applied to one state of the wind turbine system. The use of the genetic algorithms to estimate the optimal parameter values of the wind turbine leads to maximization of the power generation.Moreover, some simulation results are included to visualize the effectiveness and robustness of the proposed method.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51377041)
文摘The stator flux and electromagnetic torque observation is the basis of direct torque controlled permanent magnet synchronous motor( PMSM) drive system. However,the traditional stator flux observer based on voltage model is affected by integral initial values and integral drift,that based on current model is affected by the parameters of PMSM,so a new stator flux observation method is proposed based on an improved secondorder generalized integrator( SOGI). Compared to the stator flux observation method based on the conventional SOGI,the proposed method can not only overcome the influence of integral initial values and integral drift,but also completely eliminate the DC offset's influence. Therefore,the observation accuracy of stator flux is further improved. The simulation and experimental results both show that the proposed method has a higher stator flux and electromagnetic torque observation precision.
基金supported in part by the National Natural Science Foundation of China Grant No.51877139。
文摘Conventional fractional slot concentrated winding three-phase axial flux permanent magnet machines have an abundance of armature reaction magnetic field harmonics which deteriorate the torque performance of the machine.This paper presents a double-stator dislocated axial flux permanent magnet machine with combined wye-delta winding.A wye-delta(Y-△)winding connection method is designed to eliminate the 6 th ripple torque generated by air gap magnetic field harmonics.Then,the accurate subdomain method is adopted to acquire the no-load and armature magnetic fields of the machine,respectively,and the magnetic field harmonics and torque performance of the designed machine are analyzed.Finally,a 6 k W,4000 r/min,18-slot/16-pole axial flux permanent magnet machine is designed.The finite element simulation results show that the proposed machine can effectively eliminate the 6 th ripple torque and greatly reduce the torque ripple while the average torque is essentially identical to that of the conventional three-phase machines with wye-winding connection.
基金supported in part by the Fundamental Research Funds for the Central Universities of China under Grant No.2022JBMC050。
文摘The three-dimensional(3D)analytical model of the magnetic field in an Axial Flux Permanent Magnets Maglev Motor(AFPMMM)is proposed and investigated the influence of the structural parameters on electromagnetic characteristics.Firstly,the topology and working principle of the AFPMMM is introduced,and the model is transferred into a mathematical model in 3D cartesian coordinate.Then,the volume integral method and equivalent current sheets model is applied to find the 3D magnetic field distribution function of Halbach rotor.A unified form expression can be obtained by two dimensional discrete fourier transform(2-D DFT)is applied on the 3D magnetic field distribution function.Thirdly,the conductive and nonconductive regions of AFPMMM will be formulated by the second order vector potential(SOVP)to built the 3D analytic model.The expression of the lift force,torque and power losses was derived.Besides,the relationship between electromagnetic characteristics and structural parameters of the AFPMMM were analyzed based on 3D analytic model and validated using the 3D finite element analysis(FEA).Finally,the experiments based on a small scale prototype are carried out to verify the analytical results.
基金National Natural Science Foundation of China(No.51867012)。
文摘Aiming at the difficulty of setting the weight coefficient in the value function of model predictive torque control(MPTC)for permanent magnet synchronous motor(PMSM)driven by three-level inverter,a fine-division model predictive flux control(MPFC)method is proposed.First,establish a mathematical model between the motor torque and the stator flux linkage according to the mathematical equations of PMSM.Thus,the control of the motor torque and stator flux linkage in the MPTC is transformed into the control of a single stator flux linkage vector,omitting the cumbersome weight setting process in the traditional MPTC.The midpoint potential control strategy is proposed,which uses the characteristics of redundant small vectors to balance the midpoint potential.After that,a fine-division strategy is proposed,which effectively reduces the number of candidate vectors and the computational burden of the system.Finally,the proposed MPFC is compared with MPTC by simulation.The results show that the proposed fine-division MPFC effectively reduces the system calculation,and has the advantages of simple principle and better dynamic and steady-state control performance.The feasibility of the control strategy is verified.
文摘Recently, many optimal designs for axial flux permanent magnet (AFPM) motors were performed based on finite- element (FE) analysis. Most of the models are based on reduction of 3D problem to 2D problem which is not accurate for design aspects. This paper describes an accurate electromagnetic analysis of a surface mounted, 28 pole AFPM with concentrated stator winding. The AFPM is modeled with three-dimensional finite-element method. This model in-cludes all geometrical and physical characteristics of the machine components. Using this accurate modeling makes it possible to obtain demanded signals for a very high precision analysis. Magnetic flux density, back-EMF, magnetic axial force and cogging torque of the motor are simulated using FLUX-3D V10.3.2. Meanwhile, the model is paramet-ric and can be used for design process and sensitivity analysis.
文摘In order to reduce the cogging torque, this paper investigates the influence of some parameters on the cogging torque developed by directly driven permanent magnet synchronous wind generators. Based on the remanent magnetic flux densities, the cogging torque is computed by using finite element method. It is shown that many parameters have influence on cogging torque and the slot and pole number combination has a significant effect on cogging torque. A simple factor has been introduced to indicate the effect of the slot and pole number combination. Some practical experience to reduce the cogging torque was applied to 2 MW three phase permanent magnet synchronous generator at rated speed of 37.5 rpm for wind energy conversion. The simulation and experiment results verify the effect of the proposed method.
基金The Swedish Research Council for their financial support
文摘This paper presents calculations of the varying inductances profile for a synchronous linear surface mounted permanent magnet generator in an ABC reference system. Calculations are performed by utilizing the reluctance term, known from analytic calculations and finite element method simulations. With the inductance term identified, the voltage difference between the generator’s no load and load voltage can be calculated and an external circuit can be designed for optimal use of the generator. Two different operation intervals of the linear generator are considered and the results are discussed. The result indicates that time costly finite element simulations can be replaced with simple analytical calculations for a surface mounted permanent magnet linear generator.
文摘This paper describes the conductor eddy current loss that occurs in a permanent magnet type synchronous motor with a distributed winding stator using a rectangular copper wire designed for mild hybrid system applications for small vehicles.Compared with the conventional round wire inserter method,the space factor can be improved and the coil-end length can be shortened by applying a so-called hairpin windings using a pre-formed into hairpin shape of bar conductor,and as a result,DC current resistance of the armature winding can be reduced.However,since the conductor cross-sectional area tends to increases,the conductor eddy current loss generated by the space harmonics linkage becomes too large to ignore.In order to study the reduction of the conductor eddy current loss,it is important to visualize the spatial leakage flux distribution which causes loss and finely analyze how the magnetic path is formed.Therefore,analysis of the conductor eddy current loss distribution generated in the bar-wound conductor is performed using the CAE model that faithfully reproduces the coil-end shape of the actual machine.Furthermore,it was qualitatively clarified what ratio of conductor eddy current loss at various driving points.Finally,the results of preliminary study on reduction of conductor eddy current loss are reported.
基金supported by the Major Program of National Natural Science Foundation of China(No.U2166601)the General Program of National Natural Science Foundation of China(No.52077196).
文摘In recent years, with the growth of wind energy resources,the capability of wind farms to damp low-frequency oscillations(LFOs) has provided a notable advantage for the stabilityenhancement of the modern power grid. Meanwhile, owingto variations in the power system operating point (OP), thedamping characteristics of LFOs may be affected adversely. Inthis respect, this paper presents a coordinated robust proportional-integral-derivative (PID) based damping control approachfor permanent magnet synchronous generators (PMSGs)to effectively stabilize LFOs, while considering power system operationaluncertainties in the form of a polytopic model constructedby linearizing the power system under a given set ofOPs. The proposed approach works by modulating the DC-linkvoltage control loop of the grid-side converter (GSC) via a supplementaryPID controller, which is synthesized by transformingthe design problem into H-infinity static output feedback(SOF) control methodology. The solution of H-infinity SOF controlproblem involves satisfying linear matrix inequality (LMI)constraints based on the parameter-dependent Lyapunov functionto ensure asymptotic stability such that the minimal H-infinityperformance objective is simultaneously accomplished forthe entire polytope. The coordinated damping controllers forthe multiple wind farms are then designed sequentially by usingthe proposed approach. Eigenvalue analysis confirms the improveddamping characteristics of the closed-loop system forseveral representative OPs. Afterward, the simulation results, includingthe performance comparison with existing approaches,validate the higher robustness of the proposed approach for awide range of operating scenarios.