When switched reluctance motor(SRM)is in the status of the traditional direct torque control(DTC)system,due to the high saturation nonlinearity of the electromagnetic relationships of switched reluctance motors,the to...When switched reluctance motor(SRM)is in the status of the traditional direct torque control(DTC)system,due to the high saturation nonlinearity of the electromagnetic relationships of switched reluctance motors,the torque ripple and the stator phase current are larger.In order to resolve the above problems,through the analysis and deduction for SRM flux model and the influence of characteristics of flux and speed on torque ripple,this paper presents a variable-flux control strategy with the three closed-loop structure based on the critical flux supersaturated speed.And a DTC system of SRM with variable flux and three closed-loop is built up in Matlab/simulink.Moreover,the DSP hardware experiment platform based on the TMS320F2812 is established to validate the performance of the improved algorithm.The simulation and experimental results show that the new scheme has an obvious effect on torque ripple reduction,and the three-phase stator current is obviously reduced,which greatly reduces the stator winding copper consumption during the operation of SRM.Moreover,the improved system has good system stability.展开更多
This paper proposes an improved method for the prediction of radial vibration in switched reluctance motor(SRM)considering magnetic saturation.In this paper,the basic modeling principle is briefly introduced,it is bas...This paper proposes an improved method for the prediction of radial vibration in switched reluctance motor(SRM)considering magnetic saturation.In this paper,the basic modeling principle is briefly introduced,it is based on the derivation that the peak acceleration is dependent on the product of phase current and current gradient idi/dt.However,the derivation may cause errors due to saturation effect.Thus in this paper,the discrete sample data are firstly acquired based on DC pulse measurement method,by which electromagnetic,torque and peak acceleration characteristics can all be acquired.Then the entire peak acceleration characteristics are obtained by improved Least Square Support Vector Machine(LSSVM).Based on the obtained static peak acceleration characteristics,the time-varied radial vibration model is established based on superposition of natural oscillations of dominant vibration modes.Finally,a simulation model is built up using MATLAB/Simulink.The good agreement between simulation and experiment shows that the proposed method for modeling is feasible and accurate,even under saturation.In addition,since LSSVM does not need any prior knowledge,it is much easier for modeling compared with other existing literatures.展开更多
Direct torque control (DTC) of Switched reluctance motor is known straightforward control structure with similar execution to that of field situated control strategies. In any case, the part of ideal determination of ...Direct torque control (DTC) of Switched reluctance motor is known straightforward control structure with similar execution to that of field situated control strategies. In any case, the part of ideal determination of the voltage space vector is one of the weakest focuses in a routine DTC drive because of adjustable switching frequency and high torque ripple. In this paper, ideal choice of voltage space vectors is accomplished utilizing ANFIS (Adaptive Neuro Fuzzy Inference System) with space vector Modulation. SVM-DTC gives consistent switching frequency and the proposed ANFIS controller’s structure manages the torque and stator flux error signals through the fuzzy deduction to get a yield that takes the type of space voltage vector. Simulation results accept the proposed evolutionary system with quick torque and flux reaction with minimized torque ripple and flux ripple.展开更多
The electrical-magnetic characteristics of a Switched Reluctance Motor(SRM)exhibit highly nonlinear relationshipwith respect to the rotor position and excitation current,which poses challenges for both precise static ...The electrical-magnetic characteristics of a Switched Reluctance Motor(SRM)exhibit highly nonlinear relationshipwith respect to the rotor position and excitation current,which poses challenges for both precise static measurements and exact calculation of these properties in real-time control.To guarantee that an in-lab test result can be used in the application,firstly a measurementmethod is proposed to characterize the SRM's electromagnetic properties such as the flux linkage,magnetic co-energy,phase inductance and electromagnetic torque on the basis of an installed SRM control circuitry and half-bridge power converter.By this means the characterization process is equivalent to the online observation in its results.Secondly,a theoreticalmodel is built to discriminate the physical meaning between the incremental inductance and the phase inductance,which is the origin of other relevant parameters.This helps to guide the correct utilization of the characterization result.Thirdly an in-situ cross-validation experimentation according to the magnetizing and demagnetizing status measurement verifies the feasibilities and accuracy of the proposed inductance measuring method,which avoid a dubious FEM-based comparison between the numerical calculation and experimental results.Cross-validation experiment shows that the proposed in-situ characterization scheme obtains an accurate full-range electromagnetic properties.The proposed methodology breaks the barrier between the in-lab measurement and on-line utilization of the SRM parameters,highlighting the merits that it completely includes the in-situ factors and replicates the operational scenario without the need of specifically designed instrumentation,which is especially suitable for rapid field characterization for high power motors.展开更多
基金This work was supported in part by the National Natural Science Youth Foundation of China(51407021)the central university basic research business fee(3132015214).
文摘When switched reluctance motor(SRM)is in the status of the traditional direct torque control(DTC)system,due to the high saturation nonlinearity of the electromagnetic relationships of switched reluctance motors,the torque ripple and the stator phase current are larger.In order to resolve the above problems,through the analysis and deduction for SRM flux model and the influence of characteristics of flux and speed on torque ripple,this paper presents a variable-flux control strategy with the three closed-loop structure based on the critical flux supersaturated speed.And a DTC system of SRM with variable flux and three closed-loop is built up in Matlab/simulink.Moreover,the DSP hardware experiment platform based on the TMS320F2812 is established to validate the performance of the improved algorithm.The simulation and experimental results show that the new scheme has an obvious effect on torque ripple reduction,and the three-phase stator current is obviously reduced,which greatly reduces the stator winding copper consumption during the operation of SRM.Moreover,the improved system has good system stability.
基金This work was supported by the National Natural Science Foundation of China under Grant 51277026 and 61674033Natural Science Foundation of Jiangsu Province under Grant BK20161148the Scientific Research Foundation of Graduate School of Southeast University under Grant YBJJ1822.(Corresponding author:Weifeng Sun.)。
文摘This paper proposes an improved method for the prediction of radial vibration in switched reluctance motor(SRM)considering magnetic saturation.In this paper,the basic modeling principle is briefly introduced,it is based on the derivation that the peak acceleration is dependent on the product of phase current and current gradient idi/dt.However,the derivation may cause errors due to saturation effect.Thus in this paper,the discrete sample data are firstly acquired based on DC pulse measurement method,by which electromagnetic,torque and peak acceleration characteristics can all be acquired.Then the entire peak acceleration characteristics are obtained by improved Least Square Support Vector Machine(LSSVM).Based on the obtained static peak acceleration characteristics,the time-varied radial vibration model is established based on superposition of natural oscillations of dominant vibration modes.Finally,a simulation model is built up using MATLAB/Simulink.The good agreement between simulation and experiment shows that the proposed method for modeling is feasible and accurate,even under saturation.In addition,since LSSVM does not need any prior knowledge,it is much easier for modeling compared with other existing literatures.
文摘Direct torque control (DTC) of Switched reluctance motor is known straightforward control structure with similar execution to that of field situated control strategies. In any case, the part of ideal determination of the voltage space vector is one of the weakest focuses in a routine DTC drive because of adjustable switching frequency and high torque ripple. In this paper, ideal choice of voltage space vectors is accomplished utilizing ANFIS (Adaptive Neuro Fuzzy Inference System) with space vector Modulation. SVM-DTC gives consistent switching frequency and the proposed ANFIS controller’s structure manages the torque and stator flux error signals through the fuzzy deduction to get a yield that takes the type of space voltage vector. Simulation results accept the proposed evolutionary system with quick torque and flux reaction with minimized torque ripple and flux ripple.
基金The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China(project No.11202125 and project No.51305258).
文摘The electrical-magnetic characteristics of a Switched Reluctance Motor(SRM)exhibit highly nonlinear relationshipwith respect to the rotor position and excitation current,which poses challenges for both precise static measurements and exact calculation of these properties in real-time control.To guarantee that an in-lab test result can be used in the application,firstly a measurementmethod is proposed to characterize the SRM's electromagnetic properties such as the flux linkage,magnetic co-energy,phase inductance and electromagnetic torque on the basis of an installed SRM control circuitry and half-bridge power converter.By this means the characterization process is equivalent to the online observation in its results.Secondly,a theoreticalmodel is built to discriminate the physical meaning between the incremental inductance and the phase inductance,which is the origin of other relevant parameters.This helps to guide the correct utilization of the characterization result.Thirdly an in-situ cross-validation experimentation according to the magnetizing and demagnetizing status measurement verifies the feasibilities and accuracy of the proposed inductance measuring method,which avoid a dubious FEM-based comparison between the numerical calculation and experimental results.Cross-validation experiment shows that the proposed in-situ characterization scheme obtains an accurate full-range electromagnetic properties.The proposed methodology breaks the barrier between the in-lab measurement and on-line utilization of the SRM parameters,highlighting the merits that it completely includes the in-situ factors and replicates the operational scenario without the need of specifically designed instrumentation,which is especially suitable for rapid field characterization for high power motors.