Numerous considerations deal with specialties of bioelectromagnetic effects, including the force-free and field-free interactions. The fact that bioelectromagnetic phenomena consist of effects without mechanical force...Numerous considerations deal with specialties of bioelectromagnetic effects, including the force-free and field-free interactions. The fact that bioelectromagnetic phenomena consist of effects without mechanical forces and even without measurable fields looks impossible in the simple considerations. However, the stochastic fluctuations cause surprising results, with scientifically proven bioelectromagnetism in field-free conditions. In the first steps, we show the scalar and vector potentials’ specialties instead of electric and magnetic fields defined by the well-known Maxwellian equations. The vanishing of the fields is connected to the potentials’ stochastic fluctuations, the noises control the “zero-ground”. The result shows a possibility of a wave that has no attenuation during its transmission through the material. In this meaning, the result is similar to the consequences of the scalar-wave (SW) considerations. The structural changes follow a particular noise spectrum (called pink-noise or 1/f noise), which keeps the entropy constant in a broad range of scaling magnification.展开更多
文摘Numerous considerations deal with specialties of bioelectromagnetic effects, including the force-free and field-free interactions. The fact that bioelectromagnetic phenomena consist of effects without mechanical forces and even without measurable fields looks impossible in the simple considerations. However, the stochastic fluctuations cause surprising results, with scientifically proven bioelectromagnetism in field-free conditions. In the first steps, we show the scalar and vector potentials’ specialties instead of electric and magnetic fields defined by the well-known Maxwellian equations. The vanishing of the fields is connected to the potentials’ stochastic fluctuations, the noises control the “zero-ground”. The result shows a possibility of a wave that has no attenuation during its transmission through the material. In this meaning, the result is similar to the consequences of the scalar-wave (SW) considerations. The structural changes follow a particular noise spectrum (called pink-noise or 1/f noise), which keeps the entropy constant in a broad range of scaling magnification.