期刊文献+
共找到2,105篇文章
< 1 2 106 >
每页显示 20 50 100
Neutrophil peptide 1 accelerates the clearance of degenerative axons during Wallerian degeneration by activating macrophages after peripheral nerve crush injury 被引量:2
1
作者 Yuhui Kou Yusong Yuan +3 位作者 Qicheng Li Wenyong Xie Hailin Xu Na Han 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1822-1827,共6页
Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide ... Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide closely involved in peripheral nerve regeneration.However,the mechanism by which neutrophil peptide 1 enhances nerve regeneration remains unclear.This study was designed to investigate the relationship between neutrophil peptide 1 and macrophages in vivo and in vitro in peripheral nerve crush injury.The functions of RAW 264.7 cells we re elucidated by Cell Counting Kit-8 assay,flow cytometry,migration assays,phagocytosis assays,immunohistochemistry and enzyme-linked immunosorbent assay.Axonal debris phagocytosis was observed using the CUBIC(Clear,Unobstructed Brain/Body Imaging Cocktails and Computational analysis)optical clearing technique during Wallerian degeneration.Macrophage inflammatory factor expression in different polarization states was detected using a protein chip.The results showed that neutrophil peptide 1 promoted the prolife ration,migration and phagocytosis of macrophages,and CD206 expression on the surfa ce of macrophages,indicating M2 polarization.The axonal debris clearance rate during Wallerian degeneration was enhanced after neutrophil peptide 1 intervention.Neutrophil peptide 1 also downregulated inflammatory factors interleukin-1α,-6,-12,and tumor necrosis factor-αin invo and in vitro.Thus,the results suggest that neutrophil peptide 1 activates macrophages and accelerates Wallerian degeneration,which may be one mechanism by which neutrophil peptide 1 enhances peripheral nerve regeneration. 展开更多
关键词 axonal debris inflammatory factors MACROPHAGES neutrophil peptide 1 peripheral nerve injury peripheral nerve regeneration RAW 264.7 cells sciatic nerve Wallerian degeneration
下载PDF
Chemokine platelet factor 4 accelerates peripheral nerve regeneration by regulating Schwann cell activation and axon elongation 被引量:1
2
作者 Miao Gu Xiao Cheng +3 位作者 Di Zhang Weiyan Wu Yi Cao Jianghong He 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期190-195,共6页
Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and foun... Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and found that expression of platelet factor 4 was markedly up-regulated after sciatic nerve injury.Platelet factor is an important molecule in cell apoptosis,diffe rentiation,survival,and proliferation.Further,polymerase chain reaction and immunohistochemical staining confirmed the change in platelet factor 4 in the sciatic nerve at different time points after injury.Enzyme-linked immunosorbent assay confirmed that platelet factor 4 was secreted by Schwann cells.We also found that silencing platelet factor 4 decreased the proliferation and migration of primary cultured Schwann cells,while exogenously applied platelet factor 4 stimulated Schwann cell prolife ration and migration and neuronal axon growth.Furthermore,knocking out platelet factor 4 inhibited the prolife ration of Schwann cells in injured rat sciatic nerve.These findings suggest that Schwann cell-secreted platelet factor 4 may facilitate peripheral nerve repair and regeneration by regulating Schwann cell activation and axon growth.Thus,platelet factor 4 may be a potential therapeutic target for traumatic peripheral nerve injury. 展开更多
关键词 axon elongation bioinformatic analysis cell migration cell proliferation dorsal root ganglia peripheral nerve regeneration peripheral nerve trauma platelet factor 4 rat sciatic nerve Schwann cells
下载PDF
Mechanism by which Rab5 promotes regeneration and functional recovery of zebrafish Mauthner axons
3
作者 Jiantao Cui Yueru Shen +2 位作者 Zheng Song Dinggang Fan Bing Hu 《Neural Regeneration Research》 SCIE CAS 2025年第6期1816-1824,共9页
Rab5 is a GTPase protein that is involved in intracellular membrane trafficking. It functions by binding to various effector proteins and regulating cellular responses, including the formation of transport vesicles an... Rab5 is a GTPase protein that is involved in intracellular membrane trafficking. It functions by binding to various effector proteins and regulating cellular responses, including the formation of transport vesicles and their fusion with the cellular membrane. Rab5 has been reported to play an important role in the development of the zebrafish embryo;however, its role in axonal regeneration in the central nervous system remains unclear. In this study, we established a zebrafish Mauthner cell model of axonal injury using single-cell electroporation and two-photon axotomy techniques. We found that overexpression of Rab5 in single Mauthner cells promoted marked axonal regeneration and increased the number of intra-axonal transport vesicles. In contrast, treatment of zebrafish larvae with the Rab kinase inhibitor CID-1067700markedly inhibited axonal regeneration in Mauthner cells. We also found that Rab5 activated phosphatidylinositol 3-kinase(PI3K) during axonal repair of Mauthner cells and promoted the recovery of zebrafish locomotor function. Additionally, rapamycin, an inhibitor of the mechanistic target of rapamycin downstream of PI3K, markedly hindered axonal regeneration. These findings suggest that Rab5 promotes the axonal regeneration of injured zebrafish Mauthner cells by activating the PI3K signaling pathway. 展开更多
关键词 axonal regeneration Mauthner cell nerve regeneration Rab5 ZEBRAFISH
下载PDF
Stiffness-tunable biomaterials provide a good extracellular matrix environment for axon growth and regeneration
4
作者 Ronglin Han Lanxin Luo +4 位作者 Caiyan Wei Yaru Qiao Jiming Xie Xianchao Pan Juan Xing 《Neural Regeneration Research》 SCIE CAS 2025年第5期1364-1376,共13页
Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to p... Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to providing physical support for cells, the extracellular matrix also conveys critical mechanical stiffness cues. During the development of the nervous system, extracellular matrix stiffness plays a central role in guiding neuronal growth, particularly in the context of axonal extension, which is crucial for the formation of neural networks. In neural tissue engineering, manipulation of biomaterial stiffness is a promising strategy to provide a permissive environment for the repair and regeneration of injured nervous tissue. Recent research has fine-tuned synthetic biomaterials to fabricate scaffolds that closely replicate the stiffness profiles observed in the nervous system. In this review, we highlight the molecular mechanisms by which extracellular matrix stiffness regulates axonal growth and regeneration. We highlight the progress made in the development of stiffness-tunable biomaterials to emulate in vivo extracellular matrix environments, with an emphasis on their application in neural repair and regeneration, along with a discussion of the current limitations and future prospects. The exploration and optimization of the stiffness-tunable biomaterials has the potential to markedly advance the development of neural tissue engineering. 展开更多
关键词 ALGINATE axon growth BIOMATERIALS extracellular matrix neural repair neurons NEUROREGENERATION POLYACRYLAMIDE POLYDIMETHYLSILOXANE stiffness
下载PDF
Blockade of Rho-associated kinase prevents inhibition of axon regeneration of peripheral nerves induced by anti-ganglioside antibodies
5
作者 Andrés Berardo Cristian R.Bacaglio +3 位作者 Bárbara B.Báez Rubén Sambuelli Kazim A.Sheikh Pablo H.H.Lopez 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期895-899,共5页
Anti-ganglioside antibodies are associated with delayed/poor clinical recovery in Guillain-Barrèsyndrome,mostly related to halted axon regeneration.Cross-linking of cell surface gangliosides by anti-ganglioside a... Anti-ganglioside antibodies are associated with delayed/poor clinical recovery in Guillain-Barrèsyndrome,mostly related to halted axon regeneration.Cross-linking of cell surface gangliosides by anti-ganglioside antibodies triggers inhibition of nerve repair in in vitro and in vivo paradigms of axon regeneration.These effects involve the activation of the small GTPase Rho A/ROCK signaling pathways,which negatively modulate growth cone cytoskeleton,similarly to well stablished inhibitors of axon regeneration described so far.The aim of this work was to perform a proof of concept study to demonstrate the effectiveness of Y-27632,a selective pharmacological inhibitor of ROCK,in a mouse model of axon regeneration of peripheral nerves,where the passive immunization with a monoclonal antibody targeting gangliosides GD1a and GT1b was previously reported to exert a potent inhibitory effect on regeneration of both myelinated and unmyelinated fibers.Our results demonstrate a differential sensitivity of myelinated and unmyelinated axons to the pro-regenerative effect of Y-27632.Treatment with a total dosage of 9 mg/kg of Y-27632 resulted in a complete prevention of anti-GD1a/GT1b monoclonal antibody-mediated inhibition of axon regeneration of unmyelinated fibers to skin and the functional recovery of mechanical cutaneous sensitivity.In contrast,the same dose showed toxic effects on the regeneration of myelinated fibers.Interestingly,scale down of the dosage of Y-27632 to 5 mg/kg resulted in a significant although not complete recovery of regenerated myelinated axons exposed to anti-GD1a/GT1b monoclonal antibody in the absence of toxicity in animals exposed to only Y-27632.Overall,these findings confirm the in vivo participation of Rho A/ROCK signaling pathways in the molecular mechanisms associated with the inhibition of axon regeneration induced by anti-GD1a/GT1b monoclonal antibody.Our findings open the possibility of therapeutic pharmacological intervention targeting Rho A/Rock pathway in immune neuropathies associated with the presence of anti-ganglioside antibodies and delayed or incomplete clinical recovery after injury in the peripheral nervous system. 展开更多
关键词 anti-ganglioside antibodies anti-glycan antibodies axon regeneration GANGLIOSIDE Guillain-Barrésyndrome nerve repair ROCK Y-27632
下载PDF
A lead role for a“secondary”axonal injury response
6
作者 Melissa A.Rudy Trent A.Watkins 《Neural Regeneration Research》 SCIE CAS 2025年第2期469-470,共2页
Stress signaling following axon injury stimulates a transcriptional program for regeneration that might be exploited to promote central nervous system repair.However,this stress response drives neuronal apoptosis in n... Stress signaling following axon injury stimulates a transcriptional program for regeneration that might be exploited to promote central nervous system repair.However,this stress response drives neuronal apoptosis in non-regenerative environments.This duality presents a quandary for the development of therapeutic interventions:manipulating stress signaling to enhance recovery of damaged neurons risks accelerating neurodegeneration or restricting regenerative potential.This dichotomy is well illustrated by the fates of retinal ganglion cells(RGCs)following optic nerve crush.In this central nervous system injury model,disruption of a stress-activated MAP kinase(MAPK)cascade blocks the extensive apoptosis of RGCs that occurs in wild-type mice(Watkins et al.,2013;Welsbie et al.,2017). 展开更多
关键词 INJURY axonAL STRESS
下载PDF
The role of axon guidance molecules in the pathogenesis of epilepsy
7
作者 Zheng Liu Chunhua Pan Hao Huang 《Neural Regeneration Research》 SCIE CAS 2025年第5期1244-1257,共14页
Current treatments for epilepsy can only manage the symptoms of the condition but cannot alter the initial onset or halt the progression of the disease. Consequently, it is crucial to identify drugs that can target no... Current treatments for epilepsy can only manage the symptoms of the condition but cannot alter the initial onset or halt the progression of the disease. Consequently, it is crucial to identify drugs that can target novel cellular and molecular mechanisms and mechanisms of action. Increasing evidence suggests that axon guidance molecules play a role in the structural and functional modifications of neural networks and that the dysregulation of these molecules is associated with epilepsy susceptibility. In this review, we discuss the essential role of axon guidance molecules in neuronal activity in patients with epilepsy as well as the impact of these molecules on synaptic plasticity and brain tissue remodeling. Furthermore, we examine the relationship between axon guidance molecules and neuroinflammation, as well as the structural changes in specific brain regions that contribute to the development of epilepsy. Ample evidence indicates that axon guidance molecules, including semaphorins and ephrins, play a fundamental role in guiding axon growth and the establishment of synaptic connections. Deviations in their expression or function can disrupt neuronal connections, ultimately leading to epileptic seizures. The remodeling of neural networks is a significant characteristic of epilepsy, with axon guidance molecules playing a role in the dynamic reorganization of neural circuits. This, in turn, affects synapse formation and elimination. Dysregulation of these molecules can upset the delicate balance between excitation and inhibition within a neural network, thereby increasing the risk of overexcitation and the development of epilepsy. Inflammatory signals can regulate the expression and function of axon guidance molecules, thus influencing axonal growth, axon orientation, and synaptic plasticity. The dysregulation of neuroinflammation can intensify neuronal dysfunction and contribute to the occurrence of epilepsy. This review delves into the mechanisms associated with the pathogenicity of axon guidance molecules in epilepsy, offering a valuable reference for the exploration of therapeutic targets and presenting a fresh perspective on treatment strategies for this condition. 展开更多
关键词 axon guidance drug-resistant epilepsy EPILEPSY nerve regeneration nervous system diseases neural pathways neuroinflammatory diseases neuronal plasticity NEURONS synaptic remodeling
下载PDF
Brain-derived neurotrophic factor signaling in the neuromuscular junction during developmental axonal competition and synapse elimination
8
作者 Josep Tomàs Víctor Cilleros-Mañé +7 位作者 Laia Just-Borràs Marta Balanyà-Segura Aleksandra Polishchuk Laura Nadal Marta Tomàs Carolina Silvera-Simón Manel M.Santafé Maria A.Lanuza 《Neural Regeneration Research》 SCIE CAS 2025年第2期394-401,共8页
During the development of the nervous system,there is an overproduction of neurons and synapses.Hebbian competition between neighboring nerve endings and synapses performing different activity levels leads to their el... During the development of the nervous system,there is an overproduction of neurons and synapses.Hebbian competition between neighboring nerve endings and synapses performing different activity levels leads to their elimination or strengthening.We have extensively studied the involvement of the brain-derived neurotrophic factor-Tropomyosin-related kinase B receptor neurotrophic retrograde pathway,at the neuromuscular junction,in the axonal development and synapse elimination process versus the synapse consolidation.The purpose of this review is to describe the neurotrophic influence on developmental synapse elimination,in relation to other molecular pathways that we and others have found to regulate this process.In particular,we summarize our published results based on transmitter release analysis and axonal counts to show the different involvement of the presynaptic acetylcholine muscarinic autoreceptors,coupled to downstream serine-threonine protein kinases A and C(PKA and PKC)and voltage-gated calcium channels,at different nerve endings in developmental competition.The dynamic changes that occur simultaneously in several nerve terminals and synapses converge across a postsynaptic site,influence each other,and require careful studies to individualize the mechanisms of specific endings.We describe an activity-dependent balance(related to the extent of transmitter release)between the presynaptic muscarinic subtypes and the neurotrophin-mediated TrkB/p75NTR pathways that can influence the timing and fate of the competitive interactions between the different axon terminals.The downstream displacement of the PKA/PKC activity ratio to lower values,both in competing nerve terminals and at postsynaptic sites,plays a relevant role in controlling the elimination of supernumerary synapses.Finally,calcium entry through L-and P/Q-subtypes of voltage-gated calcium channels(both channels are present,together with the N-type channel in developing nerve terminals)contributes to reduce transmitter release and promote withdrawal of the most unfavorable nerve terminals during elimination(the weakest in acetylcholine release and those that have already become silent).The main findings contribute to a better understanding of punishment-rewarding interactions between nerve endings during development.Identifying the molecular targets and signaling pathways that allow synapse consolidation or withdrawal of synapses in different situations is important for potential therapies in neurodegenerative diseases. 展开更多
关键词 acetylcholine release adenosine receptors axonal competition brain-derived neurotrophic factor calcium channels motor end-plate muscarinic acetylcholine receptors postnatal synapse elimination serine kinases tropomyosin-related kinase receptorB
下载PDF
Axonal Conduction Velocity: A Computer Study
9
作者 Arthur D. Snider Aman Chawla Salvatore D. Morgera 《Journal of Applied Mathematics and Physics》 2024年第1期60-71,共12页
This paper derives rigorous statements concerning the propagation velocity of action potentials in axons. The authors use the Green’s function approach to approximate the action potential and find a relation between ... This paper derives rigorous statements concerning the propagation velocity of action potentials in axons. The authors use the Green’s function approach to approximate the action potential and find a relation between conduction velocity and the impulse profile. Computer simulations are used to bolster the analysis. 展开更多
关键词 NEURON axon Action Potential Conduction Velocity INTERNODE
下载PDF
Fidgetin interacting with microtubule end binding protein EB3 affects axonal regrowth in spinal cord injury
10
作者 Chao Ma Junpei Wang +8 位作者 Qifeng Tu Weijuan Bo Zunlu Hu Run Zhuo Ronghua Wu Zhangji Dong Liang Qiang Yan Liu Mei Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第12期2727-2732,共6页
Fidgetin,a microtubule-severing enzyme,regulates neurite outgrowth,axonal regeneration,and cell migration by trimming off the labile domain of microtubule polymers.Because maintenance of the microtubule labile domain ... Fidgetin,a microtubule-severing enzyme,regulates neurite outgrowth,axonal regeneration,and cell migration by trimming off the labile domain of microtubule polymers.Because maintenance of the microtubule labile domain is essential for axon initiation,elongation,and navigation,it is of interest to determine whether augmenting the microtubule labile domain via depletion of fidgetin serves as a therapeutic approach to promote axonal regrowth in spinal cord injury.In this study,we constructed rat models of spinal cord injury and sciatic nerve injury.Compared with spinal cord injury,we found that expression level of tyrosinated microtubules in the labile portion of microtubules continuously increased,whereas fidgetin decreased after peripheral nerve injury.Depletion of fidgetin enhanced axon regeneration after spinal cord injury,whereas expression level of end binding protein 3(EB3)markedly increased.Next,we performed RNA interference to knockdown EB3 or fidgetin.We found that deletion of EB3 did not change fidgetin expression.Conversely,deletion of fidgetin markedly increased expression of tyrosinated microtubules and EB3.Deletion of fidgetin increased the amount of EB3 at the end of neurites and thereby increased the level of tyrosinated microtubules.Finally,we deleted EB3 and overexpressed fidgetin.We found that fidgetin trimmed tyrosinated tubulins by interacting with EB3.When fidgetin was deleted,the labile portion of microtubules was elongated,and as a result the length of axons and number of axon branches were increased.These findings suggest that fidgetin can be used as a novel therapeutic target to promote axonal regeneration after spinal cord injury.Furthermore,they reveal an innovative mechanism by which fidgetin preferentially severs labile microtubules. 展开更多
关键词 acetylated microtubules axon regeneration axonal branching axonal regrowth end binding protein 3 fidgetin microtubule dynamics sciatic nerve injury spinal cord injury tyrosinated microtubules
下载PDF
Ca^(2+)-induced myelin pathology precedes axonal spheroid formation and is mediated in part by store-operated Ca^(2+)entry after spinal cord injury
11
作者 Spencer Ames Kia Adams +1 位作者 Mariah E.Geisen David P.Stirling 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第12期2720-2726,共7页
The formation of axonal spheroid is a common feature following spinal cord injury.To further understand the source of Ca^(2+)that mediates axonal spheroid formation,we used our previously characterized ex vivo mouse s... The formation of axonal spheroid is a common feature following spinal cord injury.To further understand the source of Ca^(2+)that mediates axonal spheroid formation,we used our previously characterized ex vivo mouse spinal cord model that allows precise perturbation of extracellular Ca^(2+).We performed twophoton excitation imaging of spinal cords isolated from Thy1YFP+transgenic mice and applied the lipophilic dye,Nile red,to record dynamic changes in dorsal column axons and their myelin sheaths respectively.We selectively released Ca^(2+)from internal stores using the Ca^(2+)ionophore ionomycin in the presence or absence of external Ca^(2+).We reported that ionomycin dose-dependently induces pathological changes in myelin and pronounced axonal spheroid formation in the presence of normal 2 m M Ca^(2+)artificial cerebrospinal fluid.In contrast,removal of external Ca^(2+)significantly decreased ionomycin-induced myelin and axonal spheroid formation at 2 hours but not at 1 hour after treatment.Using mice that express a neuron-specific Ca^(2+)indicator in spinal cord axons,we confirmed that ionomycin induced significant increases in intra-axonal Ca^(2+),but not in the absence of external Ca^(2+).Periaxonal swelling and the resultant disruption in the axo-myelinic interface often precedes and is negatively correlated with axonal spheroid formation.Pretreatment with YM58483(500 n M),a well-established blocker of store-operated Ca^(2+)entry,significantly decreased myelin injury and axonal spheroid formation.Collectively,these data reveal that ionomycin-induced depletion of internal Ca^(2+)stores and subsequent external Ca^(2+)entry through store-operated Ca^(2+)entry contributes to pathological changes in myelin and axonal spheroid formation,providing new targets to protect central myelinated fibers. 展开更多
关键词 axonal degeneration axonal spheroid formation IONOMYCIN store-operated calcium entry MYELIN Nile red peri-axonal swelling
下载PDF
Potential physiological and pathological roles for axonal ryanodine receptors
12
作者 David P.Stirling 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第4期756-759,共4页
Clinical disability following trauma or disease to the spinal cord often involves the loss of vital white matter elements including axons and glia.Although excessive Cais an established driver of axonal degeneration,t... Clinical disability following trauma or disease to the spinal cord often involves the loss of vital white matter elements including axons and glia.Although excessive Cais an established driver of axonal degeneration,therapeutically targeting externally sourced Cato date has had limited success in both basic and clinical studies.Contributing factors that may underlie this limited success include the complexity of the many potential sources of Caentry and the discovery that axons also contain substantial amounts of stored Cathat if inappropriately released could contribute to axonal demise.Axonal Castorage is largely accomplished by the axoplasmic reticulum that is part of a continuous network of the endoplasmic reticulum that provides a major sink and source of intracellular Cafrom the tips of dendrites to axonal terminals.This“neuron-within-a-neuron”is positioned to rapidly respond to diverse external and internal stimuli by amplifying cytosolic Calevels and generating short and long distance regenerative Cawaves through Cainduced Carelease.This review provides a glimpse into the molecular machinery that has been implicated in regulating ryanodine receptor mediated Carelease in axons and how dysregulation and/or overstimulation of these internodal axonal signaling nanocomplexes may directly contribute to Ca-dependent axonal demise.Neuronal ryanodine receptors expressed in dendrites,soma,and axonal terminals have been implicated in synaptic transmission and synaptic plasticity,but a physiological role for internodal localized ryanodine receptors remains largely obscure.Plausible physiological roles for internodal ryanodine receptors and such an elaborate internodal binary membrane signaling network in axons will also be discussed. 展开更多
关键词 axomyelinic synapse axon axoplasmic reticulum calcium ryanodine receptor secondary axonal degeneration spinal cord injury voltage-gated calcium channel white matter injury
下载PDF
What we know about axons in Parkinson’s disease
13
作者 Weili Cai Tingyan Wu +1 位作者 Weidong Le Xi Chen 《Aging Communications》 2023年第1期20-28,共9页
Tremendous research efforts have been made regarding the pathogenesis of Parkinson’s disease(PD).However,there are still no effective strategies to restore midbrain dopaminergic(mDA)innervation and prevent disease pr... Tremendous research efforts have been made regarding the pathogenesis of Parkinson’s disease(PD).However,there are still no effective strategies to restore midbrain dopaminergic(mDA)innervation and prevent disease progression.One possibility is that we may have been neglecting the role of axons in mDA neuronal degeneration.This review first summarizes mDA axon development during the early stage of PD and discusses how axon guidance defects contribute to PD vulnerability.Furthermore,we review axonal transport dysregulation in the numerous PD-related genetic mutations,including Parkin,PINK1,DJ1,LRRK2 and SNCA.The evidence suggests that proper axonal transport is crucial for neuronal function and survival.Finally,advanced tools for axonal studies were evaluated,including light-sheet and super-resolution microscopy.These adapted microscopes have been used to help solve questions unanswered before.Overall,the role of axon terminals in the initiation of the degeneration cascade remains undeciphered,and more research in the related area may be conducted further to restore dopamine levels in the striatum to alleviate the motor complications of PD. 展开更多
关键词 axon guidance axonal transport Parkinson’s disease light-sheet microscopy super-resolution microscopy
下载PDF
Treadmill exercise exerts a synergistic effect with bone marrow mesenchymal stem cell-derived exosomes on neuronal apoptosis and synaptic-axonal remodeling 被引量:5
14
作者 Xin-Hong Jiang Hang-Feng Li +5 位作者 Man-Li Chen Yi-Xian Zhang Hong-Bin Chen Rong-Hua Chen Ying-Chun Xiao Nan Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1293-1299,共7页
Treadmill exercise and mesenchymal stem cell transplantation are both practical and effective methods for the treatment of cerebral ischemia.However,whether there is a synergistic effect between the two remains unclea... Treadmill exercise and mesenchymal stem cell transplantation are both practical and effective methods for the treatment of cerebral ischemia.However,whether there is a synergistic effect between the two remains unclear.In this study,we established rat models of ischemia/reperfusion injury by occlusion of the middle cerebral artery for 2 hours and reperfusion for 24 hours.Rat models were perfused with bone marrow mesenchymal stem cell-derived exosomes(MSC-exos)via the tail vein and underwent 14 successive days of treadmill exercise.Neurological assessment,histopathology,and immunohistochemistry results revealed decreased neuronal apoptosis and cerebral infarct volume,evident synaptic formation and axonal regeneration,and remarkably recovered neurological function in rats subjected to treadmill exercise and MSC-exos treatment.These effects were superior to those in rats subjected to treadmill exercise or MSC-exos treatment alone.Mechanistically,further investigation revealed that the activation of JNK1/c-Jun signaling pathways regulated neuronal apoptosis and synaptic-axonal remodeling.These findings suggest that treadmill exercise may exhibit a synergistic effect with MSC-exos treatment,which may be related to activation of the JNK1/c-Jun signaling pathway.This study provides novel theoretical evidence for the clinical application of treadmill exercise combined with MSC-exos treatment for ischemic cerebrovascular disease. 展开更多
关键词 apoptosis axonal regeneration c-Jun EXOSOMES functional remodeling ischemic stroke JNK1 mesenchymal stem cells synaptic formation treadmill exercise
下载PDF
Serum response factor promotes axon regeneration following spinal cord transection injury 被引量:1
15
作者 Guo-Ying Feng Nai-Li Zhang +5 位作者 Xiao-Wei Liu Ling-Xi Tong Chun-Lei Zhang Shuai Zhou Lu-Ping Zhang Fei Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第9期1956-1960,共5页
Studies have snown that serum response factor is beneficaial for axonar regeneration of peripheral herves.However,Its role after central nervous system injury remains unclear. In this study,we established a rat model ... Studies have snown that serum response factor is beneficaial for axonar regeneration of peripheral herves.However,Its role after central nervous system injury remains unclear. In this study,we established a rat model of T9-T10 spinal cord transection injury.We found that the expression of serum response factor in injured spinal cord gray matter neurons gradually increased with time,reached its peak on the 7^(th) day,and then gradually decreased.To investigate the role of serum response factor,we used lentivirus vecto rs to ove rexpress and silence serum response factor in spinal cord tissue.We found that overexpression of serum response factor promoted motor function recovery in rats with spinal cord injury.Qualitative observation of biotinylated dextran amine anterograde tra cing showed that ove rexpression of serum response factor increased nerve fibers in the injured spinal co rd.Additionally,transmission electron microscopy showed that axon and myelin sheath morphology was restored.Silencing serum response factor had the opposite effects of ove rexpression.These findings suggest that serum response factor plays a role in the recovery of motor function after spinal cord injury.The underlying mechanism may be related to the regulation of axonal regeneration. 展开更多
关键词 axon growth associated protein 43 motor function myelin sheath NEURON REGENERATION serum response factor spinal cord spinal cord transection
下载PDF
Cyclophilin D-induced mitochondrial impairment confers axonal injury after intracerebral hemorrhage in mice 被引量:1
16
作者 Yang Yang Kai-Yuan Zhang +10 位作者 Xue-Zhu Chen Chuan-Yan Yang Ju Wang Xue-Jiao Lei Yu-Lian Quan Wei-Xiang Chen Heng-Li Zhao Li-Kun Yang Yu-Hai Wang Yu-Jie Chen Hua Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第4期849-855,共7页
The mitochondrial permeability transition pore is a nonspecific transmembrane channel.Inhibition of mitochondrial permeability transition pore opening has been shown to alleviate mitochondrial swelling,calcium overloa... The mitochondrial permeability transition pore is a nonspecific transmembrane channel.Inhibition of mitochondrial permeability transition pore opening has been shown to alleviate mitochondrial swelling,calcium overload,and axonal degeneration.Cyclophilin D is an important component of the mitochondrial permeability transition pore.Whether cyclophilin D participates in mitochondrial impairment and axonal injury after intracerebral hemorrhage is not clear.In this study,we established mouse models of intracerebral hemorrhage in vivo by injection of autologous blood and oxyhemoglobin into the striatum in Thy1-YFP mice,in which pyramidal neurons and axons express yellow fluorescent protein.We also simulated intracerebral hemorrhage in vitro in PC12 cells using oxyhemoglobin.We found that axonal degeneration in the early stage of intracerebral hemorrhage depended on mitochondrial swelling induced by cyclophilin D activation and mitochondrial permeability transition pore opening.We further investigated the mechanism underlying the role of cyclophilin D in mouse models and PC12 cell models of intracerebral hemorrhage.We found that both cyclosporin A inhibition and short hairpin RNA interference of cyclophilin D reduced mitochondrial permeability transition pore opening and mitochondrial injury.In addition,inhibition of cyclophilin D and mitochondrial permeability transition pore opening protected corticospinal tract integrity and alleviated motor dysfunction caused by intracerebral hemorrhage.Our findings suggest that cyclophilin D is used as a key mediator of axonal degeneration after intracerebral hemorrhage;inhibition of cyclophilin D expression can protect mitochondrial structure and function and further alleviate corticospinal tract injury and motor dysfunction after intracerebral hemorrhage.Our findings provide a therapeutic target for preventing axonal degeneration of white matter injury and subsequent functional impairment in central nervous diseases. 展开更多
关键词 axonal injury corticospinal tract cyclophilin D cyclosporin A intracerebral hemorrhage mitochondrial impairment mitochondrial permeability transition pore motor dysfunction retraction bulb white matter
下载PDF
DUSP2 deletion with CRISPR/Cas9 promotes Mauthner cell axonal regeneration at the early stage of zebrafish 被引量:1
17
作者 Guo-Jian Shao Xin-Liang Wang +2 位作者 Mei-Li Wei Da-Long Ren Bing Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期577-581,共5页
Axon regeneration of central neurons is a complex process that is tightly regulated by multiple extrinsic and intrinsic factors.The expression levels of distinct genes are changed after central neural system(CNS)injur... Axon regeneration of central neurons is a complex process that is tightly regulated by multiple extrinsic and intrinsic factors.The expression levels of distinct genes are changed after central neural system(CNS)injury and affect axon regeneration.A previous study identified dusp2 as an upregulated gene in zebrafish with spinal cord injury.Here,we found that dual specificity phosphatase 2(DUSP2)is a negative regulator of axon regeneration of the Mauthner cell(M-cell).DUSP2 is a phosphatase that mediates the dephosphorylation of JNK.In this study,we knocked out dusp2 by CRISPR/Cas9 and found that M-cell axons of dusp2(-/-)zebrafish had a better regeneration at the early stage after birth(within 8 days after birth),while those of dusp2^(+/-)zebrafish did not.Overexpression of DUSP2 in Tg(Tol 056)zebrafish by single-cell electroporation retarded the regeneration of M-cell axons.Western blotting results showed that DUSP2 knockout slightly increased the levels of phosphorylated JNK.These findings suggest that knocking out DUSP2 promoted the regeneration of zebrafish M-cell axons,possibly through enhancing JNK phosphorylation. 展开更多
关键词 axon regeneration central nervous system CRISPR/Cas9 DUSP2 JNK Mauthner cell single-cell electroporation spinal cord injury two-photon axotomy ZEBRAFISH
下载PDF
Neuroaxonal and cellular damage/protection by prostanoid receptor ligands,fatty acid derivatives and associated enzyme inhibitors
18
作者 Najam A.Sharif 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第1期5-17,共13页
Cellular and mitochondrial membrane phospholipids provide the substrate for synthesis and release of prostaglandins in response to certain chemical,mechanical,noxious and other stimuli.Prostaglandin D_(2),prostaglandi... Cellular and mitochondrial membrane phospholipids provide the substrate for synthesis and release of prostaglandins in response to certain chemical,mechanical,noxious and other stimuli.Prostaglandin D_(2),prostaglandin E_(2),prostaglandin F_(2)α,prostaglandin I_(2)and thromboxane-A_(2)interact with five major receptors(and their sub-types)to elicit specific downstream cellular and tissue actions.In general,prostaglandins have been associated with pain,inflammation,and edema when they are present at high local concentrations and involved on a chronic basis.However,in acute settings,certain endogenous and exogenous prostaglandins have beneficial effects ranging from mediating muscle contraction/relaxation,providing cellular protection,regulating sleep,and enhancing blood flow,to lowering intraocular pressure to prevent the development of glaucoma,a blinding disease.Several classes of prostaglandins are implicated(or are considered beneficial)in certain central nervous system dysfunctions(e.g.,Alzheimer’s,Parkinson’s,and Huntington’s diseases;amyotrophic lateral sclerosis and multiple sclerosis;stroke,traumatic brain injuries and pain)and in ocular disorders(e.g.,ocular hypertension and glaucoma;allergy and inflammation;edematous retinal disorders).This review endeavors to address the physiological/pathological roles of prostaglandins in the central nervous system and ocular function in health and disease,and provides insights towards the therapeutic utility of some prostaglandin agonists and antagonists,polyunsaturated fatty acids,and cyclooxygenase inhibitors. 展开更多
关键词 AL-8810 axon brain central nervous system cyclooxygenase inhibitors neuron NEUROPROTECTION OCULAR polyunsaturated fatty acids PROSTAGLANDINS
下载PDF
Overcoming axon regeneration failure and psychopathology:how may gabapentinoids help boost CNS repair?
19
作者 Haven I.Rodocker Andrea Tedeschi 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1703-1704,共2页
Spinal cord injury (SCI) at the cervical level compromises the function of both upper and lower extremities, thereby impeding an individual’s ability to complete daily tasks required for independent living and profou... Spinal cord injury (SCI) at the cervical level compromises the function of both upper and lower extremities, thereby impeding an individual’s ability to complete daily tasks required for independent living and profoundly affecting the overall quality of life among individuals afflicted by SCI and their families. Recovery of spinal cord functions may be attained by promoting the sprouting of non-injured axons and/or the regeneration of damaged axons. 展开更多
关键词 thereby BOOST axon
下载PDF
Molecular mechanisms of lesion-induced axonal sprouting in the corticofugal projection:the role of glial cells
20
作者 Leechung Chang Nobuhiko Yamamoto 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1259-1260,共2页
After injury of the central nervous system(CNS),neuronal circuits are known to remodel for functional recovery.In general,there are two strategies for the remodeling:axonal regeneration and sprouting(Figure 1A).Axonal... After injury of the central nervous system(CNS),neuronal circuits are known to remodel for functional recovery.In general,there are two strategies for the remodeling:axonal regeneration and sprouting(Figure 1A).Axonal regeneration is re-growth of injured neurons themselves,but axons hardly regenerate in the adult mammalian CNS(Silver and Miller,2004).On the other hand,axonal sprouting is new growth from intact or spared neurons to the denervated target by forming axon collaterals,compensating for damaged circuits.This process is a more effective way for circuit remodeling,as it does not necessarily require long axonal elongation. 展开更多
关键词 axonAL PROJECTION FIGURE
下载PDF
上一页 1 2 106 下一页 到第
使用帮助 返回顶部