期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Axonal remodeling of the corticospinal tract during neurological recovery after stroke 被引量:10
1
作者 Zhongwu Liu Hongqi Xin Michael Chopp 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第5期939-943,共5页
Stroke remains the leading cause of long-term disability.Hemiparesis is one of the most common post-stroke motor deficits and is largely attributed to loss or disruption of the motor signals from the affected motor co... Stroke remains the leading cause of long-term disability.Hemiparesis is one of the most common post-stroke motor deficits and is largely attributed to loss or disruption of the motor signals from the affected motor cortex.As the only direct descending motor pathway,the corticospinal tract(CST)is the primary pathway to innervate spinal motor neurons,and thus,forms the neuroanatomical basis to control the peripheral muscles for voluntary movements.Here,we review evidence from both experimental animals and stroke patients,regarding CST axonal damage,functional contribution of CST axonal integrity and remodeling to neurological recovery,and therapeutic approaches aimed to enhance CST axonal remodeling after stroke.The new insights gleaned from preclinical and clinical studies may encourage the development of more rational therapeutics with a strategy targeted to promote axonal rewiring for corticospinal innervation,which will significantly impact the current clinical needs of subacute and chronic stroke treatment. 展开更多
关键词 axonal degeneration axonal integrity axonal remodeling corticospinal tract motor performance neurological recovery STROKE therapeutic strategy
下载PDF
Reactive astrocytes promote axonal remodeling and neurological recovery after stroke 被引量:4
2
作者 Zhongwu Liu Hongqi Xin Michael Chopp 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第21期1874-1875,共2页
Stroke is a leading cause of death and disability in adults worldwide. For decades, the primary approach and goal of therapy for stroke has focused on neuroprotection, namely treating the injured tissue, with interven... Stroke is a leading cause of death and disability in adults worldwide. For decades, the primary approach and goal of therapy for stroke has focused on neuroprotection, namely treating the injured tissue, with interventions designed to reduce the volume of cerebral infarction. Enormous effort in the laboratory has been devoted to the development of neuroprotective agents in an attempt to salvage ischemic neurons in the brain from irreversible injury; however, all these efforts have failed to demonstrate efficacy in clinical trials of stroke. In order to treat stroke, we have to re-con- ceptualize and redefine our therapeutic targets. Acute neu- roprotective treatments for stroke fight a temporal battle of salvaging cerebral tissue before the onset of death, as well as a physiological impediment of delivery of therapy to tissue which has inadequate blood flow. 展开更多
关键词 GFAP CSPG Reactive astrocytes promote axonal remodeling and neurological recovery after stroke
下载PDF
Regulation of axonal remodeling following spinal cord injury 被引量:2
3
作者 Anne Jacobi Florence M.Bareyre 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第10期1555-1557,共3页
Central nervous system injuries,such as spinal cord injury(SCI),are a leading cause of disability in young adults.SCIs generally have severe clinical consequences and often lead to loss of motor or sensory input bel... Central nervous system injuries,such as spinal cord injury(SCI),are a leading cause of disability in young adults.SCIs generally have severe clinical consequences and often lead to loss of motor or sensory input below the segment of injury. 展开更多
关键词 Regulation of axonal remodeling following spinal cord injury STAT FGFR Figure CST
下载PDF
Axonal remodeling in the corticospinal tract after stroke: how does rehabilitative training modulate it? 被引量:10
4
作者 Naohiko Okabe Kazuhiko Narita Osamu Miyamoto 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第2期185-192,共8页
Stroke causes long-term disability, and rehabilitative training is commonly used to improve the consecutive functional recovery. Following brain damage, surviving neurons undergo morphological alterations to reconstru... Stroke causes long-term disability, and rehabilitative training is commonly used to improve the consecutive functional recovery. Following brain damage, surviving neurons undergo morphological alterations to reconstruct the remaining neural network. In the motor system, such neural network remodeling is observed as a motor map reorganization. Because of its significant correlation with functional recovery, motor map reorganization has been regarded as a key phenomenon for functional recovery after stroke. Although the mechanism underlying motor map reorganization remains unclear, increasing evidence has shown a critical role for axonal remodeling in the corticospinal tract. In this study, we review previous studies investigating axonal remodeling in the corticospinal tract after stroke and discuss which mechanisms may underlie the stimulatory effect of rehabilitative training. Axonal remodeling in the corticospinal tract can be classified into three types based on the location and the original targets of corticospinal neurons, and it seems that all the surviving corticospinal neurons in both ipsilesional and contralesional hemisphere can participate in axonal remodeling and motor map reorganization. Through axonal remodeling, corticospinal neurons alter their output selectivity from a single to multiple areas to compensate for the lost function. The remodeling of the corticospinal axon is influenced by the extent of tissue destruction and promoted by various therapeutic interventions, including rehabilitative training. Although the precise molecular mechanism underlying rehabilitation-promoted axonal remodeling remains elusive, previous data suggest that rehabilitative training promotes axonal remodeling by upregulating growth-promoting and downregulating growth-inhibiting signals. 展开更多
关键词 stroke rehabilitative training axonal remodeling corticospinal tract motor map reorganization motor system neurotrophic factor functional compensation neural activity growth promoting signal growth inhibitory signal task-specific training
下载PDF
Small extracellular vesicles derived from cerebral endothelial cells with elevated microRNA 27a promote ischemic stroke recovery
5
作者 Yi Zhang Zhongwu Liu +7 位作者 Michael Chopp Michael Millman Yanfeng Li Pasquale Cepparulo Amy Kemper Chao Li Li Zhang Zheng Gang Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第1期224-233,共10页
Axonal remodeling is a critical aspect of ischemic brain repair processes and contributes to spontaneous functional recovery.Our previous in vitro study demonstrated that exosomes/small extracellular vesicles(sEVs)iso... Axonal remodeling is a critical aspect of ischemic brain repair processes and contributes to spontaneous functional recovery.Our previous in vitro study demonstrated that exosomes/small extracellular vesicles(sEVs)isolated from cerebral endothelial cells(CEC-sEVs)of ischemic brain promote axonal growth of embryonic cortical neurons and that microRNA 27a(miR-27a)is an elevated miRNA in ischemic CEC-sEVs.In the present study,we investigated whether normal CEC-sEVs engineered to enrich their levels of miR-27a(27a-sEVs)further enhance axonal growth and improve neurological outcomes after ischemic stroke when compared with treatment with non-engineered CEC-sEVs.27a-sEVs were isolated from the conditioned medium of healthy mouse CECs transfected with a lentiviral miR-27a expression vector.Small EVs isolated from CECs transfected with a scramble vector(Scra-sEVs)were used as a control.Adult male mice were subjected to permanent middle cerebral artery occlusion and then were randomly treated with 27a-sEVs or Scra-sEVs.An array of behavior assays was used to measure neurological function.Compared with treatment of ischemic stroke with Scra-sEVs,treatment with 27a-sEVs significantly augmented axons and spines in the peri-infarct zone and in the corticospinal tract of the spinal grey matter of the denervated side,and significantly improved neurological outcomes.In vitro studies demonstrated that CEC-sEVs carrying reduced miR-27a abolished 27a-sEV-augmented axonal growth.Ultrastructural analysis revealed that 27a-sEVs systemically administered preferentially localized to the pre-synaptic active zone,while quantitative reverse transcription-polymerase chain reaction and Western Blot analysis showed elevated miR-27a,and reduced axonal inhibitory proteins Semaphorin 6A and Ras Homolog Family Member A in the peri-infarct zone.Blockage of the Clathrin-dependent endocytosis pathway substantially reduced neuronal internalization of 27a-sEVs.Our data provide evidence that 27a-sEVs have a therapeutic effect on stroke recovery by promoting axonal remodeling and improving neurological outcomes.Our findings also suggest that suppression of axonal inhibitory proteins such as Semaphorin 6A may contribute to the beneficial effect of 27a-sEVs on axonal remodeling. 展开更多
关键词 axonal remodeling cerebral endothelial cells exosomes miR-27a mitochondria Semaphorin 6A small extracellular vesicles stroke
下载PDF
Gualou Guizhi decoction promotes neurological functional recovery and neurogenesis following focal cerebral ischemia/reperfusion 被引量:15
6
作者 Jing Han Ji-Zhou Zhang +4 位作者 Zhi-Feng Zhong Zuan-Fang Li Wen-Sheng Pang Juan Hu Li-Dian Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第8期1408-1416,共9页
Recovery following stroke involves neurogenesis and axonal remodeling within the ischemic brain. Gualou Guizhi decoction (GLGZD) is a Chinese traditional medicine used for the treatment of post-stroke limb spasm. GL... Recovery following stroke involves neurogenesis and axonal remodeling within the ischemic brain. Gualou Guizhi decoction (GLGZD) is a Chinese traditional medicine used for the treatment of post-stroke limb spasm. GLGZD has been reported to have neuroprotective effects in cerebral ischemic injury. However, the effects of GLGZD on neurogenesis and axonal remodeling following cerebral ischemia remain unknown. In this study, a rat model of focal cerebral ischemia/reperfusion was established by middle cerebral artery occlusion. Neurologi- cal function was assessed immediately after reperfusion using Longa's 5-point scoring system. The rats were randomly divided into vehicle and GLGZD groups. Rats in the sham group were given sham operation. The rats in the GLGZD group were intragastrically administered GLGZD, once daily, for 14 consecutive days. The rats in the vehicle and sham groups were intragastrically administered distilled water. Modified neurological severity score test, balance beam test and foot fault test were used to assess motor functional changes. Nissl staining was performed to evaluate histopathological changes in the brain. Immunofluorescence staining was used to examine cell proliferation using the marker 5-bromo-2'-deoxyuridine (BrdU) as well as expression of the neural precursor marker doublecortin (DCX), the astrocyte marker glial fibrillary acidic protein (GFAP) and the axon regeneration marker growth associated protein-43 (GAP-43). GLGZD substan- tially mitigated pathological injury, increased the number of BrdU, DCX and GFAP-immunoreactive cells in the subventricular zone of the ischemic hemisphere, increased GAP-43 expression in the cortical peri-infarct region, and improved motor function. These findings suggest that GLGZD promotes neurological functional recovery by increasing cell proliferation, enhancing axonal regeneration, and in- creasing the numbers of neuronal precursors and astrocytes in the peri-infarct area. 展开更多
关键词 nerve regeneration Gualou Guizhi decoction cell proliferation NEUROGENESIS NEUROBLAST ASTROCYTE axon remodeling ischemic stroke Chinese medicine compound neural regeneration
下载PDF
Drosophila ubiquitin E3 ligase dSmurf is required for synapse remodeling and axon pruning by glia 被引量:2
7
作者 Changyan Chen Shuai Yin +1 位作者 Wenze Cao Margaret S. Ho 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2017年第1期67-70,共4页
Animal behaviors and higher-order functions rely on complex neural circuits built by synaptic connections (synapses) to deliver messages among different brain cells. As the major mediator in the nervous system, neur... Animal behaviors and higher-order functions rely on complex neural circuits built by synaptic connections (synapses) to deliver messages among different brain cells. As the major mediator in the nervous system, neurons communicate via synapses, which undergo constant structural remodeling with strict regulation. 展开更多
关键词 Drosophila ubiquitin E3 ligase dSmurf is required for synapse remodeling and axon pruning by glia
原文传递
Magnetic resonance imaging and cell-based neurorestorative therapy after brain injury 被引量:1
8
作者 Quan Jiang 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第1期7-14,共8页
Restorative cell-based therapies for experimental brain injury, such as stroke and traumatic brain injury,substantially improve functional outcome. We discuss and review state of the art magnetic resonance imaging met... Restorative cell-based therapies for experimental brain injury, such as stroke and traumatic brain injury,substantially improve functional outcome. We discuss and review state of the art magnetic resonance imaging methodologies and their applications related to cell-based treatment after brain injury. We focus on the potential of magnetic resonance imaging technique and its associated challenges to obtain useful new information related to cell migration, distribution, and quantitation, as well as vascular and neuronal remodeling in response to cell-based therapy after brain injury. The noninvasive nature of imaging might more readily help with translation of cell-based therapy from the laboratory to the clinic. 展开更多
关键词 stroke traumatic brain injury traumatic brain injury MRI cell therapy cell labeling vascular remodeling axonal remodeling angiogenesis neuronal plasticity cerebral blood flow cerebral blood volume blood brain barrier permeability diffusion tensor MRI
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部