The azeotrope disappeared when the formic acid-water mixtures were treated by membrane distillation. Membrane distillation were used for separation of formic acid-water azeotropic mixtures for the first time.
A novel,safe,economic and sensitive method of spectrophotometric estimation has been developed using Azeoptropic mixture (water∶methanol:60∶40,v/v) for the quantitative determination of Lornoxicam,a practically wate...A novel,safe,economic and sensitive method of spectrophotometric estimation has been developed using Azeoptropic mixture (water∶methanol:60∶40,v/v) for the quantitative determination of Lornoxicam,a practically water-insoluble drug.Hence,Lornoxicam stock solution was prepared in Azeoptropic mixture.Lornoxicam showed maximum absorbance at 383 nm.Beer's law was obeyed in the concentration range 4-24 μg/mL with regression coefficient of 0.999.The method was validated in terms of linearity (R2=0.999),precision (CV for intra-day and inter-day was 0.28 0.68 and 0.12-0.92,respectively),accuracy (98.03-100.59% w/w) and specificity.This method is simple,precise,accurate,sensitive and reproducible and can be used for the routine quality control testing of the marketed formulations.展开更多
The molar heat capacity of the azeotropic mixture composed of water and benzene was measured by an adia-batic calorimeter in the temperature range from 80 to 320 K. The phase transitions took place in the temperature ...The molar heat capacity of the azeotropic mixture composed of water and benzene was measured by an adia-batic calorimeter in the temperature range from 80 to 320 K. The phase transitions took place in the temperature range from 265.409 to 275.165 K and 275.165 to 279.399 K. The phase transition temperatures were determined to be 272.945 and 278.339 K, which were corresponding to the solid-liquid phase transitions of water and benzene, respectively. The thermodynamic functions and the excess thermodynamic functions of the mixture relative to stan-dard temperature 298.15 K were derived from the relationships of the thermodynamic functions and the function of the measured heat capacity with respect to temperature.展开更多
Molar heat capacities of n-butanol and the azeotropic mixture in the binary system [water (x=0.716) plus n-butanol (x=0.284)] were measured with an adiabatic calorimeter in a temperature range from 78 to 320 K. Th...Molar heat capacities of n-butanol and the azeotropic mixture in the binary system [water (x=0.716) plus n-butanol (x=0.284)] were measured with an adiabatic calorimeter in a temperature range from 78 to 320 K. The functions of the heat capacity with respect to thermodynamic temperature were estabhshed for the azeotropic mixture. A glass transition was observed at (111.9±1.2) K. The phase transitions took place at (179.26±0.77) and (269.69±0.14) K corresponding to the solid-hquid phase transitions of n-butanol and water, respectively. The phase-transition enthalpy and entropy of water were calculated. A thermodynamic function of excess molar heat capacity with respect to temperature was estabhshed, which took account of physical mixing, destructions of self-association and cross-association for n-butanol and water, respectively. The thermodynamic functions and the excess thermodynamic ones of the binary systems relative to 298.15 K were derived based on the relationships of the thermodynamic functions and the function of the measured heat capacity and the calculated excess heat capacity with respect to temperature.展开更多
Molar heat capacities of the pure samples of acetone, methanol and the azeotropic mixture composed of acetone cyclohexane and methanol were measured by an adiabatic calorimeter from 78 to 320 K. The solid-solid and so...Molar heat capacities of the pure samples of acetone, methanol and the azeotropic mixture composed of acetone cyclohexane and methanol were measured by an adiabatic calorimeter from 78 to 320 K. The solid-solid and solid-liquid phase transitions of the pure samples and the mixture were determined based on the curve of the heat capacity with respect to temperature. The phase transitions took place at (126.16±0.68) and (178.96±1.47) K for the sample of acetone, (157.79±0.95) and (175.93±0.95) K for methanol, which were corresponding to the solid-solid and the solid-liquid phase transitions of the acetone and the methanol, respectively. And the phase transitions occurred in the temperature ranges of 120 to 190 K and 278 to 280 K corresponding to the solid-solid and the solid-liquid phase transitions of mixture of acetone, cyclohexane and methanol, respectively. The thermodynamic functions and the excess thermodynamic functions of the mixture relative to standard temperature of 298.15 K were derived based on the relationships of the thermodynamic functions and the function of the measured heat capacity with respect to temperature.展开更多
A new reactive and extractive distillation process with ionic liquids as entrainer and catalyst (RED-IL)was proposed to produce methanol and n-butyl acetate by transesterification reaction of methyl acetate with n-b...A new reactive and extractive distillation process with ionic liquids as entrainer and catalyst (RED-IL)was proposed to produce methanol and n-butyl acetate by transesterification reaction of methyl acetate with n-butanol. The RED-IL process was simulated via a rigorous model, and high purity products of methanol and n-butyl acetate can be obtained in such a process. The effects of reflux ratio, feed mode, holdup, feed location, entrainer ratio and catalyst concentration on RED-IL process were investigated. The conversion of methyl acetate and purities of products increase with the holdup in column, entrainer ratio and catalyst content. An optimal reflux ratio exists in RED-IL process. Comparing to the mixed-feed mode, the segregated-feed mode is more effective, in which the optimal feed locations of reactants exist.展开更多
文摘The azeotrope disappeared when the formic acid-water mixtures were treated by membrane distillation. Membrane distillation were used for separation of formic acid-water azeotropic mixtures for the first time.
文摘A novel,safe,economic and sensitive method of spectrophotometric estimation has been developed using Azeoptropic mixture (water∶methanol:60∶40,v/v) for the quantitative determination of Lornoxicam,a practically water-insoluble drug.Hence,Lornoxicam stock solution was prepared in Azeoptropic mixture.Lornoxicam showed maximum absorbance at 383 nm.Beer's law was obeyed in the concentration range 4-24 μg/mL with regression coefficient of 0.999.The method was validated in terms of linearity (R2=0.999),precision (CV for intra-day and inter-day was 0.28 0.68 and 0.12-0.92,respectively),accuracy (98.03-100.59% w/w) and specificity.This method is simple,precise,accurate,sensitive and reproducible and can be used for the routine quality control testing of the marketed formulations.
基金the National Natural Science Foundation of China (No. 20073047) and K. C. Wong Education Foundation, Hong Kong.
文摘The molar heat capacity of the azeotropic mixture composed of water and benzene was measured by an adia-batic calorimeter in the temperature range from 80 to 320 K. The phase transitions took place in the temperature range from 265.409 to 275.165 K and 275.165 to 279.399 K. The phase transition temperatures were determined to be 272.945 and 278.339 K, which were corresponding to the solid-liquid phase transitions of water and benzene, respectively. The thermodynamic functions and the excess thermodynamic functions of the mixture relative to stan-dard temperature 298.15 K were derived from the relationships of the thermodynamic functions and the function of the measured heat capacity with respect to temperature.
基金Project supported by the National Natural Science Foundation of China (No. 20073047) and Doctorial Foundation of Shandong Province (No. 2004BS04021).
文摘Molar heat capacities of n-butanol and the azeotropic mixture in the binary system [water (x=0.716) plus n-butanol (x=0.284)] were measured with an adiabatic calorimeter in a temperature range from 78 to 320 K. The functions of the heat capacity with respect to thermodynamic temperature were estabhshed for the azeotropic mixture. A glass transition was observed at (111.9±1.2) K. The phase transitions took place at (179.26±0.77) and (269.69±0.14) K corresponding to the solid-hquid phase transitions of n-butanol and water, respectively. The phase-transition enthalpy and entropy of water were calculated. A thermodynamic function of excess molar heat capacity with respect to temperature was estabhshed, which took account of physical mixing, destructions of self-association and cross-association for n-butanol and water, respectively. The thermodynamic functions and the excess thermodynamic ones of the binary systems relative to 298.15 K were derived based on the relationships of the thermodynamic functions and the function of the measured heat capacity and the calculated excess heat capacity with respect to temperature.
基金Project supported by the National Natural Science Foundation of China (No. 20073047) and the Doctor Foundation of Shandong Province (No. 2004B S04021 ).
文摘Molar heat capacities of the pure samples of acetone, methanol and the azeotropic mixture composed of acetone cyclohexane and methanol were measured by an adiabatic calorimeter from 78 to 320 K. The solid-solid and solid-liquid phase transitions of the pure samples and the mixture were determined based on the curve of the heat capacity with respect to temperature. The phase transitions took place at (126.16±0.68) and (178.96±1.47) K for the sample of acetone, (157.79±0.95) and (175.93±0.95) K for methanol, which were corresponding to the solid-solid and the solid-liquid phase transitions of the acetone and the methanol, respectively. And the phase transitions occurred in the temperature ranges of 120 to 190 K and 278 to 280 K corresponding to the solid-solid and the solid-liquid phase transitions of mixture of acetone, cyclohexane and methanol, respectively. The thermodynamic functions and the excess thermodynamic functions of the mixture relative to standard temperature of 298.15 K were derived based on the relationships of the thermodynamic functions and the function of the measured heat capacity with respect to temperature.
基金Supported by the Innovation Fund of Tianjin University
文摘A new reactive and extractive distillation process with ionic liquids as entrainer and catalyst (RED-IL)was proposed to produce methanol and n-butyl acetate by transesterification reaction of methyl acetate with n-butanol. The RED-IL process was simulated via a rigorous model, and high purity products of methanol and n-butyl acetate can be obtained in such a process. The effects of reflux ratio, feed mode, holdup, feed location, entrainer ratio and catalyst concentration on RED-IL process were investigated. The conversion of methyl acetate and purities of products increase with the holdup in column, entrainer ratio and catalyst content. An optimal reflux ratio exists in RED-IL process. Comparing to the mixed-feed mode, the segregated-feed mode is more effective, in which the optimal feed locations of reactants exist.