Glycidyl azide polymer (GAP) with the advantages of non-volatility and excellent thermal stability is a candidate as a re- placement for nitroglycerine (NG) in a double base propellant. The GAP-NC double base prop...Glycidyl azide polymer (GAP) with the advantages of non-volatility and excellent thermal stability is a candidate as a re- placement for nitroglycerine (NG) in a double base propellant. The GAP-NC double base propellants were formulated with GAP and nitrocellulose (NC) fibers. Tensile test and SEM characterization indicated that GAP-NC propellants had a homoge- neous structure. Thermogravimetric analysis of GAP-NC propellants revealed that the onset decomposition temperature reached a high level ranging from 192.9 to 194.6 ℃, which indicated that the substitution of NG with GAP contributed to the safe storage and process operations for double base propellant. The result analysis of decomposition products of GAP-NC propellants showed that the main gas decomposition products of the propellants were NO, NO〉 CO, CO2, NH3, CH4, HCN, N2 CH20 and C2H40. The thermal decomposition process of the specimens was proposed.展开更多
Aluminum(Al) particles are good fuel additives to improve the energy output performances of explosives. Under detonation environment, reaction delay of Al particles plays a key role in the energy release efficiency. U...Aluminum(Al) particles are good fuel additives to improve the energy output performances of explosives. Under detonation environment, reaction delay of Al particles plays a key role in the energy release efficiency. Up to date, reaction delay of Al particles is still limited by the efficiency of mass and heat transfer from oxidizers to Al particles. To address this issue, a homogeneous fuel-oxidizer assembly has recently become a promising strategy. In this work, oxidizer-activated Al fuel particles(ALG) were prepared with glycidyl azide polymer(GAP) as the oxidizer. The ALG was in uniform spherical shape and core-shell structure with shell layer of around 5 nm which was observed by scanning electron microscope and transmission electron microscope. The localized nanoscale mid-IR measurement detected the uniform distribution of characteristic absorption bond of GAP in the shell layer which confirmed the homogenous fuel-oxidizer structure of ALG. A thermal gravimetric analysis of ALG at ultrafast heating rate of 1000℃/min under argon atmosphere was conducted. The decomposition of GAP finished much earlier than that of GAP at heating rate of 10℃/min. Under ultrafast high laser fluence, the reaction response of ALG was characterized and compared with that of micro-sized Al(μAl). With the increase of laser energy, the propagation distance of the shock wave increased. However, the velocity histories were nearly the same when energies were lower than 299 mJ or higher than 706 mJ. The propagation distance of the shock wave for ALG was 0.5 mm larger than that for μAl at 2.1 μs. The underwater explosion showed the peak pressure and the shock wave energy of the ALG-based explosive were both higher than those of the μAl-based explosive at 2.5 m. This study shows the feasibility to improve the energy release of Al-based explosives via using the oxidizer-activated Al fuel particles with energetic polymer as the oxidizer.展开更多
Different GAP-based CSRP samples with different binder contents were prepared and compared with that of conventional HTPB propellant.The crosslinker mixture of trimethylol propane(TMP)and butane diol(BD)was used in th...Different GAP-based CSRP samples with different binder contents were prepared and compared with that of conventional HTPB propellant.The crosslinker mixture of trimethylol propane(TMP)and butane diol(BD)was used in the GAP matrix beside the addition of dibutyltin dilaurate(DBTDL)to ensure cross-linking and curing completion of the prepared CSRP.The viscosity and hardness of all prepared formulations were monitored continuously during the curing process.The mechanical characteristics of cured samples were tested.The burning rate at operating pressure and specific impulse were measured,while the theoretical specific impulse(I sp)was calculated by ICT code and compared with the measured results.According to the results,DOA was found to be a suitable plasticizer for GAP when using in propellant.The mechanical properties of CSRP with 25%GAP can produce the optimum mechanical behavior,which is close to that of HTPB-based CSRP.The optimum GAP-based formulation is one candidate to replace the traditional HTPB-based CSRP with high burning rate for some applications.展开更多
The aim of the present work was to prepare a well-defined hydrogel of chemically cross-linked and organ-metallic complexed interpenetrating PEG networks. The hydrogel was synthesized via the reaction of copper(I)- c...The aim of the present work was to prepare a well-defined hydrogel of chemically cross-linked and organ-metallic complexed interpenetrating PEG networks. The hydrogel was synthesized via the reaction of copper(I)- catalyzed 1,3-dipolar azide-alkyne cycloaddition(CuA AC) with poly(ethylene glycol)-dopamine(PEG-DA)(“Click Chemistry”) followed by complexation with Fe-(3+) ions to crosslink the polymeric network. The chemical composition and morphology of the resulting hydrogels were characterized by Fourier transform infrared spectroscopy(FTIR), -1H-NMR and scanning electron microscopy(SEM). Swelling ratio, mechanical strength, conductivity, and degradation behaviors of the hydrogels were also studied. The effect of the polymer chain length on properties of hydrogels was explored. The compressive strength of hydrogels could reach as high as 13.1 MPa with a conductivity of 2.2 × 10^-5 S·cm^-1. The hydrogels also exhibited excellent thermal stability even at a temperature of 300 °C, whereas degradation of the hydrogel after 7 weeks was observed under a physiological condition. In addition, the hydrogel exhibited a good biocompatibility based on its in vivo performance through an in vivo subcutaneous implantation model. No inflammation and no obvious abnormality of the surrounding tissue were observed when the hydrogel was subcutaneously implanted for 2 weeks. This work is a step towards creating a new pathway to synthesize hydrogels of interpenetrating networks which could be of important applications in the future research.展开更多
文摘Glycidyl azide polymer (GAP) with the advantages of non-volatility and excellent thermal stability is a candidate as a re- placement for nitroglycerine (NG) in a double base propellant. The GAP-NC double base propellants were formulated with GAP and nitrocellulose (NC) fibers. Tensile test and SEM characterization indicated that GAP-NC propellants had a homoge- neous structure. Thermogravimetric analysis of GAP-NC propellants revealed that the onset decomposition temperature reached a high level ranging from 192.9 to 194.6 ℃, which indicated that the substitution of NG with GAP contributed to the safe storage and process operations for double base propellant. The result analysis of decomposition products of GAP-NC propellants showed that the main gas decomposition products of the propellants were NO, NO〉 CO, CO2, NH3, CH4, HCN, N2 CH20 and C2H40. The thermal decomposition process of the specimens was proposed.
基金National Natural Science Foundation of China(Grant No.11832006,U1530262,21975024).
文摘Aluminum(Al) particles are good fuel additives to improve the energy output performances of explosives. Under detonation environment, reaction delay of Al particles plays a key role in the energy release efficiency. Up to date, reaction delay of Al particles is still limited by the efficiency of mass and heat transfer from oxidizers to Al particles. To address this issue, a homogeneous fuel-oxidizer assembly has recently become a promising strategy. In this work, oxidizer-activated Al fuel particles(ALG) were prepared with glycidyl azide polymer(GAP) as the oxidizer. The ALG was in uniform spherical shape and core-shell structure with shell layer of around 5 nm which was observed by scanning electron microscope and transmission electron microscope. The localized nanoscale mid-IR measurement detected the uniform distribution of characteristic absorption bond of GAP in the shell layer which confirmed the homogenous fuel-oxidizer structure of ALG. A thermal gravimetric analysis of ALG at ultrafast heating rate of 1000℃/min under argon atmosphere was conducted. The decomposition of GAP finished much earlier than that of GAP at heating rate of 10℃/min. Under ultrafast high laser fluence, the reaction response of ALG was characterized and compared with that of micro-sized Al(μAl). With the increase of laser energy, the propagation distance of the shock wave increased. However, the velocity histories were nearly the same when energies were lower than 299 mJ or higher than 706 mJ. The propagation distance of the shock wave for ALG was 0.5 mm larger than that for μAl at 2.1 μs. The underwater explosion showed the peak pressure and the shock wave energy of the ALG-based explosive were both higher than those of the μAl-based explosive at 2.5 m. This study shows the feasibility to improve the energy release of Al-based explosives via using the oxidizer-activated Al fuel particles with energetic polymer as the oxidizer.
文摘Different GAP-based CSRP samples with different binder contents were prepared and compared with that of conventional HTPB propellant.The crosslinker mixture of trimethylol propane(TMP)and butane diol(BD)was used in the GAP matrix beside the addition of dibutyltin dilaurate(DBTDL)to ensure cross-linking and curing completion of the prepared CSRP.The viscosity and hardness of all prepared formulations were monitored continuously during the curing process.The mechanical characteristics of cured samples were tested.The burning rate at operating pressure and specific impulse were measured,while the theoretical specific impulse(I sp)was calculated by ICT code and compared with the measured results.According to the results,DOA was found to be a suitable plasticizer for GAP when using in propellant.The mechanical properties of CSRP with 25%GAP can produce the optimum mechanical behavior,which is close to that of HTPB-based CSRP.The optimum GAP-based formulation is one candidate to replace the traditional HTPB-based CSRP with high burning rate for some applications.
基金supported by the National Natural Science Foundation of China(Nos.2127402021074022 and 21304019)+2 种基金the Key Laboratory of Environmental Medicine Engineering of Ministry of Education(Southeast University)National“973”Project Foundation of China(No.2010CB944804)“the Fundamental Research Funds for the Central Universities”
文摘The aim of the present work was to prepare a well-defined hydrogel of chemically cross-linked and organ-metallic complexed interpenetrating PEG networks. The hydrogel was synthesized via the reaction of copper(I)- catalyzed 1,3-dipolar azide-alkyne cycloaddition(CuA AC) with poly(ethylene glycol)-dopamine(PEG-DA)(“Click Chemistry”) followed by complexation with Fe-(3+) ions to crosslink the polymeric network. The chemical composition and morphology of the resulting hydrogels were characterized by Fourier transform infrared spectroscopy(FTIR), -1H-NMR and scanning electron microscopy(SEM). Swelling ratio, mechanical strength, conductivity, and degradation behaviors of the hydrogels were also studied. The effect of the polymer chain length on properties of hydrogels was explored. The compressive strength of hydrogels could reach as high as 13.1 MPa with a conductivity of 2.2 × 10^-5 S·cm^-1. The hydrogels also exhibited excellent thermal stability even at a temperature of 300 °C, whereas degradation of the hydrogel after 7 weeks was observed under a physiological condition. In addition, the hydrogel exhibited a good biocompatibility based on its in vivo performance through an in vivo subcutaneous implantation model. No inflammation and no obvious abnormality of the surrounding tissue were observed when the hydrogel was subcutaneously implanted for 2 weeks. This work is a step towards creating a new pathway to synthesize hydrogels of interpenetrating networks which could be of important applications in the future research.