期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Detection performance and inversion processing of logging-while-drilling extra-deep azimuthal resistivity measurements 被引量:8
1
作者 Lei Wang Shao-Gui Deng +3 位作者 Pan Zhang Ying-Chang Cao Yi-Ren Fan Xi-Yong Yuan 《Petroleum Science》 SCIE CAS CSCD 2019年第5期1015-1027,共13页
We present systematic investigations on the physics,detection performance and inversion of logging-while-drilling extradeep azimuthal resistivity measurements(EDARM).First,the definitions of EDRAM measurements are dis... We present systematic investigations on the physics,detection performance and inversion of logging-while-drilling extradeep azimuthal resistivity measurements(EDARM).First,the definitions of EDRAM measurements are discussed,followed by the derivation of the attenuation and phase-shift geometrical factors to illustrate the relative contributions of formation units to the observed signals.Then,a new definition of detection depth,which considers the uncertainty of inversion results caused by the data noise,is proposed to quantify the detection capability of ED ARM.Finally,the B ayesian theory associated with Markov chain Monte Carlo sampling is introduced for fast processing of EDARM data.Numerical results show that ED ARM is capable of detecting the azimuth and distance of remote bed boundaries,and the detection capability increases with increasing spacing and resistivity contrast.The EDARM tool can accommodate a large range of formation resistivity and is able to provide the resistivity anisotropy at arbitrary relative dipping angles.In addition,multiple bed boundaries and reservoir images near the borehole are readily obtained by using the Bayesian inversion. 展开更多
关键词 Extra-deep azimuthal resistivity measurements(EDARM) Detection performance Inversion method Reservoir imaging Detection of multiple bed boundaries
下载PDF
Efficient finite-volume simulation of the LWD orthogonal azimuth electromagnetic response in a three-dimensional anisotropic formation using potentials on cylindrical meshes 被引量:6
2
作者 Wang Hao-Sen Wang Hong-Nian +1 位作者 Yang Shou-Wen Yin Chang-Chun 《Applied Geophysics》 SCIE CSCD 2020年第2期192-207,314,315,共18页
In this study,the cylindrical finite-volume method(FVM)is advanced for the efficient and high-precision simulation of the logging while drilling(LWD)orthogonal azimuth electromagnetic tool(OAEMT)response in a three-di... In this study,the cylindrical finite-volume method(FVM)is advanced for the efficient and high-precision simulation of the logging while drilling(LWD)orthogonal azimuth electromagnetic tool(OAEMT)response in a three-dimensional(3 D)anisotropic formation.To overcome the ill-condition and convergence problems arising from the low induction number,Maxwell’s equations are reformulated into a mixed Helmholtz equation for the coupled potentials in a cylindrical coordinate system.The electrical fi eld continuation method is applied to approximate the perfectly electrical conducting(PEC)boundary condition,to improve the discretization accuracy of the Helmholtz equation on the surface of metal mandrels.On the base,the 3 D FVM on Lebedev’s staggered grids in the cylindrical coordinates is employed to discretize the mixed equations to ensure good conformity with typical well-logging tool geometries.The equivalent conductivity in a non-uniform element is determined by a standardization technique.The direct solver,PARDISO,is applied to efficiently solve the sparse linear equation systems for the multi-transmitter problem.To reduce the number of calls to PARDISO,the whole computational domain is divided into small windows that contain multiple measuring points.The electromagnetic(EM)solutions produced by all the transmitters per window are simultaneously solved because the discrete matrix,relevant to all the transmitters in the same window,is changed.Finally,the 3 D FVM is validated against the numerical mode matching method(NMM),and the characteristics of both the coaxial and coplanar responses of the EM field tool are investigated using the numerical results. 展开更多
关键词 finite-volume method orthogonal azimuth electromagnetic measurement Maxwell’s equation anisotropic formation logging while drilling(LWD)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部