For real-time inversion and fast reconstruction of formation true resistivity, the forward modeling of electromagnetic wave logging while drilling is usually based on the transversely isotropic formation model with ve...For real-time inversion and fast reconstruction of formation true resistivity, the forward modeling of electromagnetic wave logging while drilling is usually based on the transversely isotropic formation model with vertical symmetry axis(VTI medium), but it only considers the horizontal and vertical resistivity. It has certain limitation during practical application. This paper presents a forward calculation method of electromagnetic wave logging while drilling in transversely isotropic(TTI) strata with inclined symmetry axis based on the Dyadic Green’s function. Anisotropic angle and azimuth are used to characterize TTI formation. The proposed algorithm is verified by numerical examples, the half-space electromagnetic wave reflection and transmission characteristics with different media are analyzed, and the necessity to use the new algorithm is pointed out. Numerical simulation also shows that there exist a critical borehole dip and critical anisotropic angle in TTI formation. Electromagnetic wave logging while drilling responses follows opposite rule before and after these two critical angles. Besides, the 'horns' at the interface are not only related to well deviation, resistivity contrast, but also related to anisotropic angle and anisotropic azimuth.展开更多
In this study,the cylindrical finite-volume method(FVM)is advanced for the efficient and high-precision simulation of the logging while drilling(LWD)orthogonal azimuth electromagnetic tool(OAEMT)response in a three-di...In this study,the cylindrical finite-volume method(FVM)is advanced for the efficient and high-precision simulation of the logging while drilling(LWD)orthogonal azimuth electromagnetic tool(OAEMT)response in a three-dimensional(3 D)anisotropic formation.To overcome the ill-condition and convergence problems arising from the low induction number,Maxwell’s equations are reformulated into a mixed Helmholtz equation for the coupled potentials in a cylindrical coordinate system.The electrical fi eld continuation method is applied to approximate the perfectly electrical conducting(PEC)boundary condition,to improve the discretization accuracy of the Helmholtz equation on the surface of metal mandrels.On the base,the 3 D FVM on Lebedev’s staggered grids in the cylindrical coordinates is employed to discretize the mixed equations to ensure good conformity with typical well-logging tool geometries.The equivalent conductivity in a non-uniform element is determined by a standardization technique.The direct solver,PARDISO,is applied to efficiently solve the sparse linear equation systems for the multi-transmitter problem.To reduce the number of calls to PARDISO,the whole computational domain is divided into small windows that contain multiple measuring points.The electromagnetic(EM)solutions produced by all the transmitters per window are simultaneously solved because the discrete matrix,relevant to all the transmitters in the same window,is changed.Finally,the 3 D FVM is validated against the numerical mode matching method(NMM),and the characteristics of both the coaxial and coplanar responses of the EM field tool are investigated using the numerical results.展开更多
基金Supported by the National Natural Science Foundation of China(41474100,41574118)
文摘For real-time inversion and fast reconstruction of formation true resistivity, the forward modeling of electromagnetic wave logging while drilling is usually based on the transversely isotropic formation model with vertical symmetry axis(VTI medium), but it only considers the horizontal and vertical resistivity. It has certain limitation during practical application. This paper presents a forward calculation method of electromagnetic wave logging while drilling in transversely isotropic(TTI) strata with inclined symmetry axis based on the Dyadic Green’s function. Anisotropic angle and azimuth are used to characterize TTI formation. The proposed algorithm is verified by numerical examples, the half-space electromagnetic wave reflection and transmission characteristics with different media are analyzed, and the necessity to use the new algorithm is pointed out. Numerical simulation also shows that there exist a critical borehole dip and critical anisotropic angle in TTI formation. Electromagnetic wave logging while drilling responses follows opposite rule before and after these two critical angles. Besides, the 'horns' at the interface are not only related to well deviation, resistivity contrast, but also related to anisotropic angle and anisotropic azimuth.
基金supported jointly by Strategic Pilot Science and Technology Project of Chinese Academy of Sciences (No. XDA14020102)National key research and development plan (No. 2017YFC0601805)+5 种基金National Natural Science Foundation of China (No. 41574110)Youth Foundation of Hebei Educational Committee (No. QN2018217)Hebei Higher Education Teaching Reform Research and Practice(No. 2018GJJG328)Zhangjiakou science and technology bureau(No. 1821011B)Doctoral Fund of Hebei Institute of Architecture and Civil Engineering (No. B-201606)Academic Team Innovation Ability Improvement Project of Hebei Institute of Architecture and Civil Engineering(TD202011)。
文摘In this study,the cylindrical finite-volume method(FVM)is advanced for the efficient and high-precision simulation of the logging while drilling(LWD)orthogonal azimuth electromagnetic tool(OAEMT)response in a three-dimensional(3 D)anisotropic formation.To overcome the ill-condition and convergence problems arising from the low induction number,Maxwell’s equations are reformulated into a mixed Helmholtz equation for the coupled potentials in a cylindrical coordinate system.The electrical fi eld continuation method is applied to approximate the perfectly electrical conducting(PEC)boundary condition,to improve the discretization accuracy of the Helmholtz equation on the surface of metal mandrels.On the base,the 3 D FVM on Lebedev’s staggered grids in the cylindrical coordinates is employed to discretize the mixed equations to ensure good conformity with typical well-logging tool geometries.The equivalent conductivity in a non-uniform element is determined by a standardization technique.The direct solver,PARDISO,is applied to efficiently solve the sparse linear equation systems for the multi-transmitter problem.To reduce the number of calls to PARDISO,the whole computational domain is divided into small windows that contain multiple measuring points.The electromagnetic(EM)solutions produced by all the transmitters per window are simultaneously solved because the discrete matrix,relevant to all the transmitters in the same window,is changed.Finally,the 3 D FVM is validated against the numerical mode matching method(NMM),and the characteristics of both the coaxial and coplanar responses of the EM field tool are investigated using the numerical results.