From different reports, it (AZO) and indium-doped including usage areas. We nanocrystalline films with is realized that there is a need to consider all sides of aluminum-doped zinc oxide zinc oxide (IZO) thin film...From different reports, it (AZO) and indium-doped including usage areas. We nanocrystalline films with is realized that there is a need to consider all sides of aluminum-doped zinc oxide zinc oxide (IZO) thin films with their optical, luminescence and surface properties establish an assessment to carry out further information to summarize AZO and IZO impact of the layer number.展开更多
Ionizing radiation is a promising method for dye degradation or textile coloration using commercial azo dyes and small molecular weight organic dyes. Thus, the stability of the molecular structure of an azo dye is imp...Ionizing radiation is a promising method for dye degradation or textile coloration using commercial azo dyes and small molecular weight organic dyes. Thus, the stability of the molecular structure of an azo dye is important under ionizing radiation. Disperse Blue 79, as an example azo dyes, was irradiated with gamma rays or electron beam (EB) to investigate the radiation-induced effects on the molecular structure. Ultraviolet visible spectroscopy (UV Vis), nuclear magnetic resonance (NMR) spectra analysis, and mass spectrometry (MS) studies indicated that acetoxy and methoxyl were easily cleaved on the irradiation of the aqueous dye solution but retained a stable structure on the irradiation of the powder form. Gamma rays and EB showed similar effects on the decomposition process. Chromaticity changes using the Lab* method showed that the dye turned to dark yellow and the value of b* of the irradiated dyes increased with the increasing absorbed dose, which indicated that Disperse Blue 79 could be partly decomposed in an aqueous solution This work was nancially supported by the National Natural Science Foundation of China (Nos. 11875313, 11605274, and 11575277). Xiao-Jun Ding and Ming Yu contributed equally to this work. & Jing-Ye Li jyli@shnu.edu.cn 1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Lab of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China with an absorbed dose of 10 kGy. Furthermore, the results demonstrated that the chemical stability of the Disperse Blue 79 under ionizing radiation are different in its powder form with the dye in the aqueous solution.展开更多
The photodegradation of Azo blue dye in aqueous solution by H2O2/ferrioxalate complexes as a photooxidant under irradiation of low pressure mercury lamp was studied.Various factors influencing the reaction were analyz...The photodegradation of Azo blue dye in aqueous solution by H2O2/ferrioxalate complexes as a photooxidant under irradiation of low pressure mercury lamp was studied.Various factors influencing the reaction were analyzed.The results indicated that the degradation of Azo blue dye in UV/H2O2/ferrioxalate complexes was very effective and rapid.The feasibility of the Azo blue photodegradation under the sunlight was also studied.展开更多
通过11株白腐真菌对5种偶氮染料脱色效果比较的基础上,从中筛选出一株对偶氮染料酸性铬蓝K脱色效果较好的菌株云芝SG0027,并对其脱色条件进行优化。在单因素和Plackett-Burman实验的基础上,采用Box-Behnken设计方法,以酸性铬蓝K脱色率...通过11株白腐真菌对5种偶氮染料脱色效果比较的基础上,从中筛选出一株对偶氮染料酸性铬蓝K脱色效果较好的菌株云芝SG0027,并对其脱色条件进行优化。在单因素和Plackett-Burman实验的基础上,采用Box-Behnken设计方法,以酸性铬蓝K脱色率为响应值,对其降解条件进行优化。结果表明,云芝对偶氮染料酸性铬蓝K的最佳降解条件为:温度29.5℃,接菌量2片(直径为4 mm的菌片),葡萄糖20 g/L,马铃薯40 g/L,装液量30 m L/100 m L,摇床转速150 r/min,初始p H 5.5。优化后,云芝对酸性铬蓝K的脱色率可达95.94%。展开更多
文摘From different reports, it (AZO) and indium-doped including usage areas. We nanocrystalline films with is realized that there is a need to consider all sides of aluminum-doped zinc oxide zinc oxide (IZO) thin films with their optical, luminescence and surface properties establish an assessment to carry out further information to summarize AZO and IZO impact of the layer number.
基金financially supported by the National Natural Science Foundation of China(Nos.11875313,11605274,and 11575277)
文摘Ionizing radiation is a promising method for dye degradation or textile coloration using commercial azo dyes and small molecular weight organic dyes. Thus, the stability of the molecular structure of an azo dye is important under ionizing radiation. Disperse Blue 79, as an example azo dyes, was irradiated with gamma rays or electron beam (EB) to investigate the radiation-induced effects on the molecular structure. Ultraviolet visible spectroscopy (UV Vis), nuclear magnetic resonance (NMR) spectra analysis, and mass spectrometry (MS) studies indicated that acetoxy and methoxyl were easily cleaved on the irradiation of the aqueous dye solution but retained a stable structure on the irradiation of the powder form. Gamma rays and EB showed similar effects on the decomposition process. Chromaticity changes using the Lab* method showed that the dye turned to dark yellow and the value of b* of the irradiated dyes increased with the increasing absorbed dose, which indicated that Disperse Blue 79 could be partly decomposed in an aqueous solution This work was nancially supported by the National Natural Science Foundation of China (Nos. 11875313, 11605274, and 11575277). Xiao-Jun Ding and Ming Yu contributed equally to this work. & Jing-Ye Li jyli@shnu.edu.cn 1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Lab of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China with an absorbed dose of 10 kGy. Furthermore, the results demonstrated that the chemical stability of the Disperse Blue 79 under ionizing radiation are different in its powder form with the dye in the aqueous solution.
文摘The photodegradation of Azo blue dye in aqueous solution by H2O2/ferrioxalate complexes as a photooxidant under irradiation of low pressure mercury lamp was studied.Various factors influencing the reaction were analyzed.The results indicated that the degradation of Azo blue dye in UV/H2O2/ferrioxalate complexes was very effective and rapid.The feasibility of the Azo blue photodegradation under the sunlight was also studied.
文摘通过11株白腐真菌对5种偶氮染料脱色效果比较的基础上,从中筛选出一株对偶氮染料酸性铬蓝K脱色效果较好的菌株云芝SG0027,并对其脱色条件进行优化。在单因素和Plackett-Burman实验的基础上,采用Box-Behnken设计方法,以酸性铬蓝K脱色率为响应值,对其降解条件进行优化。结果表明,云芝对偶氮染料酸性铬蓝K的最佳降解条件为:温度29.5℃,接菌量2片(直径为4 mm的菌片),葡萄糖20 g/L,马铃薯40 g/L,装液量30 m L/100 m L,摇床转速150 r/min,初始p H 5.5。优化后,云芝对酸性铬蓝K的脱色率可达95.94%。