Fe3O4/MWCNTs nanocomposites were prepared by chemical oxidation coprecipitation method and developed as highly efficient heterogeneous Fenton-like catalyst. XRD results revealed that Fe3O4 nanoparticles deposited onto...Fe3O4/MWCNTs nanocomposites were prepared by chemical oxidation coprecipitation method and developed as highly efficient heterogeneous Fenton-like catalyst. XRD results revealed that Fe3O4 nanoparticles deposited onto MWCNTs surface remained the inverse spinel crystal structure of cubic Fe3O4 phase. The FTIR characteristic peaks of MWCNTs weakened or disappeared due to the anchor of Fe3O4 nanoparticles and Fe-O peak at 570 cm^-1 was indicative of the formation of Fe3O4. TEM observation revealed that Fe3O4 nanoparticles were tightly anchored by MWCNTs. The Fenton-like catalytic activity of Fe3O4/MWCNTs nanocomposites for the discoloration of methyl orange (MO) was much higher than that of Fe3O4 nanoparticles. The process optimization of this heterogeneous Fenton-like system was implemented by response surface methodology (RSM). The optimum conditions for MO discoloration were determined to be of 12.3 mmoi/L H2O2 concentration, 2.9 glL catalyst dosage, solution pH 2.7 and 39.3 min reaction time, with the maximum predicted value for MO discoloration ratio of 101.85%. The corresponding experimental value under the identical conditions was obtained as 99.86%, which was very close to the predicted one with the absolute deviation of 1.99%.展开更多
基金Acknowledgements This work was kindly supported by the National Natural Science Foundation of China (Grant Nos. 51404083 and 21273060), the Natural Science Foundation of Heilongjiang Province (E2015065) and the Program for New Century Excellent Talents in Heilongjiang Provincial Universities (1253-NCET-010).
文摘Fe3O4/MWCNTs nanocomposites were prepared by chemical oxidation coprecipitation method and developed as highly efficient heterogeneous Fenton-like catalyst. XRD results revealed that Fe3O4 nanoparticles deposited onto MWCNTs surface remained the inverse spinel crystal structure of cubic Fe3O4 phase. The FTIR characteristic peaks of MWCNTs weakened or disappeared due to the anchor of Fe3O4 nanoparticles and Fe-O peak at 570 cm^-1 was indicative of the formation of Fe3O4. TEM observation revealed that Fe3O4 nanoparticles were tightly anchored by MWCNTs. The Fenton-like catalytic activity of Fe3O4/MWCNTs nanocomposites for the discoloration of methyl orange (MO) was much higher than that of Fe3O4 nanoparticles. The process optimization of this heterogeneous Fenton-like system was implemented by response surface methodology (RSM). The optimum conditions for MO discoloration were determined to be of 12.3 mmoi/L H2O2 concentration, 2.9 glL catalyst dosage, solution pH 2.7 and 39.3 min reaction time, with the maximum predicted value for MO discoloration ratio of 101.85%. The corresponding experimental value under the identical conditions was obtained as 99.86%, which was very close to the predicted one with the absolute deviation of 1.99%.