Bioremediation is an eco-compatible and economical approach to counter textile dye menace. The isolated Lentinus squarrosulus AF5 was assessed for decolourization of textile azo dyes, and had shown ~93%, 88% and 70% d...Bioremediation is an eco-compatible and economical approach to counter textile dye menace. The isolated Lentinus squarrosulus AF5 was assessed for decolourization of textile azo dyes, and had shown ~93%, 88% and 70% decolorization of Reactive blue 160 (RB160), Reactive black 5 (RB5) and Amido black 10B (AB10B) respectively. Further analysis using UV-vis, HPLC, and FTIR, <sup>1</sup>H NMR had shown the degradation of the dyes. Toxicity analysis of the metabolites was performed using seed germination and plant growth on two agriculturally important plants Guar (Cyamopsis tetragonoloba) and wheat (Triticum aestivum) as well as cytotoxicity analysis using the human keratinocyte cell line (HaCaT). The dye mix appeared inhibitory for seed germination (20% - 40%), whereas metabolites were non-inhibitory for germination. Treatment of HaCaT cells with of dye mix and metabolites led into 45% and ~100% of cell viability of HaCaT cells respectively. Therefore, metabolites following degradation of the dye mix were observed to be non-toxic.展开更多
Mg-based amorphous alloys exhibit efficient catalytic performance and excellent biocompatibility with a promising application probability,specifically in the field of azo dye wastewater degradation.However,the problem...Mg-based amorphous alloys exhibit efficient catalytic performance and excellent biocompatibility with a promising application probability,specifically in the field of azo dye wastewater degradation.However,the problems like difficulty in preparation and poor cycling stability need to be solved.At present,Mg-based amorphous alloys applied in wastewater degradation are available in powder and ribbon.The amorphous alloy powder fabricated by ball milling has a high specific surface area,and its reactivity is thousands of times better than that of gas atomized alloy powder.But the development is limited due to the high energy consumption,difficult and costly process of powder recycling.The single roller melt-spinning method is a new manufacturing process of amorphous alloy ribbon.Compared to amorphous powder,the specific surface area of amorphous ribbon is relatively lower,therefore,it is necessary to carry out surface modification to enhance it.Dealloying is a way that can form a pore structure on the surface of the amorphous alloys,increasing the specific surface area and providing more reactive sites,which all contribute to the catalytic performance.Exploring the optimal conditions for Mg-based amorphous alloys in wastewater degradation by adjusting amorphous alloy composition,choosing suitable method to preparation and surface modification,reducing cost,expanding the pH range will advance the steps to put Mg-based amorphous alloys in industrial environments into practice.展开更多
Azo dyes have received considerable attention because of their association with various human health problems. The aim of the investigation is to determine the adsorption behavior ofazo dyes in aqueous solution on DG0...Azo dyes have received considerable attention because of their association with various human health problems. The aim of the investigation is to determine the adsorption behavior ofazo dyes in aqueous solution on DG06, GSE17200, and GSE17201 soils using C. I. Acid Red 14 (AR14) as example. The experimental results indicate that the Freundlich model expresses the adsorption isotherm better than the Langmuir model and the pseudo-second-order model achieves adsorption of AR14 on the three soils well. Based on the pseudo-second-order model, the adsorption thermodynamic of AR14 on DG06 soil have been studied and the thermodynamics parameter of AGO is determined and AGO value shows the adsorption process of AR14 on DG06 is mainly physical in nature. Furthermore, the effects of temperature, pH and salinity (NaC1) on adsorption have been investigated. The decrease in pH or the increase in salinity enhances the adsorption of AR14 by DG06, GSE17200, and GSE17201.展开更多
Azo dyes are among the oldest man made chemicals and they are still widely used in the textile, printing and the food industries. About 10%-15% of the total dyes used in the industry is released into the environment ...Azo dyes are among the oldest man made chemicals and they are still widely used in the textile, printing and the food industries. About 10%-15% of the total dyes used in the industry is released into the environment during the manufacturing and usage. Some dyes and some of their N substituted aromatic bio transformation products are toxic and/or carcinogenic and therefore these dyes are considered to be environmental pollutants and health hazards. These azo dyes are degraded by physico chemical and biological methods. Of these, biological methods are considered to be the most economical and efficient. In this work, attempts were made to degrade these dyes aerobically. The organisms which were efficient in degrading the following azo dyes Red RB, Remazol Red, Remazol Blue, Remazol Violet, Remazol Yellow, Golden Yellow, Remazol Orange, Remazol Black were isolated from three different sources viz., wastewater treatment plant, paper mill effluent treatment plant and tannery wastewater treatment plant. The efficiency of azo dye degradation by mixed cultures from each source was analyzed. It was found that mixed cultures from tannery treatment plant worked efficiently in decolorizing Remazol Red, Remazol Orange, Remazol Blue and Remazol Violet, while mixed cultures from the paper mill effluent worked efficiently in decolorizing Red RB, Golden Yellow and Remazol Yellow. The mixed cultures from wastewater treatment plant efficiently decolorized Remazol Black.展开更多
A azoreductase gene with 537 bp was obtained by PCR amplification from Rhodobacter sphaeroides AS1 1737 The enzyme, with a molecular weight of 18 7 kD, was efficiently expressed in Escherichia coli and its biodegr...A azoreductase gene with 537 bp was obtained by PCR amplification from Rhodobacter sphaeroides AS1 1737 The enzyme, with a molecular weight of 18 7 kD, was efficiently expressed in Escherichia coli and its biodegradation characteristics for azo dyes were investigated. Furthermore, the reaction kinetics and mechanism of azo dyes catalyzed by the genetically engineered azoreductase were studied in detail. The presence of a hydrazo-intermediate was identified, which provided a convincing evidence for the assumption that azo dyes were degraded via an incomplete reduction stage.展开更多
The effects of various quinone compounds on the decolorization rates of sulfonated azo dyes by Sphingomonas xenophaga QYY were investigated. The results showed that anthraquinone-2-sulfonate (AQS) was the most effec...The effects of various quinone compounds on the decolorization rates of sulfonated azo dyes by Sphingomonas xenophaga QYY were investigated. The results showed that anthraquinone-2-sulfonate (AQS) was the most effective redox mediator and AQS reduction was the rate-limited step of AQS-mediated decolorization of sulfonated azo dyes. Based on AQS biological toxicity tests, it was assumed that AQS might enter the cells and kill them. In the cytoplasmic extracts from strain QYY, AQS more effectively increased decolorization rates of sulfonated azo dyes than other quinone compounds. In addition, we found a NADH/FMN-dependent AQS reductase using nondenaturing polyacrylamide gel electrophoresis (Native-PAGE).展开更多
In this study,6-chloro-4-hydroxy-2-quinolone and 6-flouro-4-hydroxy-2-quinolone were synthesized from corresponding dianilides.These compounds were coupled with some diazotized aromatic amines to give the correspondin...In this study,6-chloro-4-hydroxy-2-quinolone and 6-flouro-4-hydroxy-2-quinolone were synthesized from corresponding dianilides.These compounds were coupled with some diazotized aromatic amines to give the corresponding azo disperse dyes.The structures of the quinolone derivatives and new azo dyes were confirmed by UV-vis,FT-IR,;H NMR and elemental analysis.展开更多
A bacterial strain was isolated from activated sludge and has been identified as Pseudomonas sp. S-42 capable of decolorizing azo dyes such as Diamira Brilliant Orange RR (DBO-RR), Direct Brown M (DBM), Eriochrome Bro...A bacterial strain was isolated from activated sludge and has been identified as Pseudomonas sp. S-42 capable of decolorizing azo dyes such as Diamira Brilliant Orange RR (DBO-RR), Direct Brown M (DBM), Eriochrome Brown R (EBR) and so on. The growing cells, intact cells, cell-free extract and purified enzyme of strain S-42 could decolorize azo dyes under similar conditions at the optimum pH 7.0 and temperature of 37℃. The efficiencies of decolorization for DBO-RR, DBM, EBR with intact cells stood more than 90%. When the cell concentration was 15mg (wet)/ml and the reaction time was 5 hours, the decolorizing activities of intact cells for above three azo dyes were 1.75, 2.4, 0.95 μg dye/mg cell, respectively. Cell-free extract and purified enzyme belonged to azoreductase with molecular weight about 34000±2000 and Vmax and Km values for DBO-RR of 13μmol/mg protein/nun and 54μmol, respectively. The results from the detection of the biodegradation products of DBO-RR by spectrophotometric and NaNO2 reaction methods showed that the biodegradation of azo dyes was initiated by the reducing cleavage of azo bonds. The biodegradation metabolism path for DBO-RR by Psued. S-42 was hypothesized.展开更多
The feasibility of photocatalytic degradation of X 3B azo dye by TiO 2/beads photocatalyst was studied. The effects of parameters such as the amount of TiO 2/beads, airflow, as well as the concentrations of H ...The feasibility of photocatalytic degradation of X 3B azo dye by TiO 2/beads photocatalyst was studied. The effects of parameters such as the amount of TiO 2/beads, airflow, as well as the concentrations of H 2O 2, Fe 3+ , Mg 2+ and Na + on the photocatalytic degradation of X 3B azo dye were also studied. The results showed that 25 mg/dm 3 X 3B azo dye can be photocatalytically degraded completely by 30 min illumination with a 375W medium pressure mercury lamp. Adding a small amount of H 2O 2 or Fe 3+ , the efficiencies of photocatalytic degradation of X 3B azo dye were increased rapidly. The mechanisms of the reaction and the role of the additives were also investigated. After 120 hours TiO 2/beads showed no significant loss of the photocatalytic activity.展开更多
Two azo dyes,C.I.Reactive Red 195(RR195)and C.I.Acid Black 234(AB234)were degraded by photocatalysis of Fe(Ⅲ)-oxalate complexes/H2O2 in aqueous non-ionic surfactant,Triton X-100(TX-100)solution.Some factors affecting...Two azo dyes,C.I.Reactive Red 195(RR195)and C.I.Acid Black 234(AB234)were degraded by photocatalysis of Fe(Ⅲ)-oxalate complexes/H2O2 in aqueous non-ionic surfactant,Triton X-100(TX-100)solution.Some factors affecting the dye degradation such as TX-100 concentration,irradiation intensity,and sodium chloride were investigated.The interaction and competition between dye and TX-100 during the degradation were also examined using spectrophotometry and maximum bubble pressure method,respectively.The results indicated that TX-100 showed a significant reduction effect on degradation of two azo dyes,but which was largely confined to TX-100 concentration below the Critical Micellar Concentration(CMC).And the reduction was considerably decreased above the CMC,especially in the case of AB234.Moreover,the reducing effect of TX-100 on dye degradation almost did not vary with irradiation intensity.And the impact of sodium chloride on dye degradation was limited by the addition of TX-100.展开更多
Palladium nanoparticles(PdNPs)were synthesized in a green way using sodium alginate functioning as both reductant and stabilizer.The formation of as-synthesized Pd NPs was supervised by Ultraviolet–visible(UV–Vis)sp...Palladium nanoparticles(PdNPs)were synthesized in a green way using sodium alginate functioning as both reductant and stabilizer.The formation of as-synthesized Pd NPs was supervised by Ultraviolet–visible(UV–Vis)spectroscopy and confirmed by the surface plasmon resonance(SPR)band.The effect of several synthesis factors such as precursor ratio,solution p H,reaction time,and temperature were investigated by the factorial design of experiments in order to optimize the experimental conditions.The optimal synthesis parameters were achieved by heating 1.0 ml of 1.0%sodium alginate(SA),3.0 ml of 10-2 mol·L-1 H2PdCl4 at 80°C for a period of 30 min in a neutral reaction medium(pH=6).High-resolution transmission electron microscope(HRTEM),energy dispersive X-ray(EDX)spectroscopy,selected area electron diffraction(SAED)pattern,X-ray powder diffraction(XRD),and dynamic light scattering(DLS)were used to confirm the uniform spherical shapes and high crystallinity of Pd NPs with average particle size of(2.12±1.42)nm.The SEM images show the distribution of Pd NPs presented among the SA.FTIR spectra indicate that SA is a good capping agent to stabilize Pd NPs for a long time.The catalytic degradation of model azo-dyes such as mono-azo(Cibacron Yellow FN–2R)and di-azo(Cibacron Deep Red S–B)were confirmed the catalytic activity of Pd NPs.The Pd NPs can accelerate the degradation rate by more than 80 and 10 times respectively as confirmed by kinetics constant(k)values.展开更多
In the present study, the effects of various quinone compounds on the decolorization rates of azo dyes by the E. coli strain CD-2 were investigated. The results showed that Lawsone was the most effective redox mediato...In the present study, the effects of various quinone compounds on the decolorization rates of azo dyes by the E. coli strain CD-2 were investigated. The results showed that Lawsone was the most effective redox mediator. The optimum concentration for Lawsone is 0.1 mmol/L. The effects of physic-chemical parameters on the Methyl Orange degradation by the strain were determined. The results indicated that, in the quinone mediated decolorization system, strain CD-2 exhibited a good degradation ability in the range of pH from 4 to 9, temperature from 20°C to 50°C and salinity from 1% to 6%. With Lawsone as a redox mediator, a broad spectrum of azo dyes with different structures could be decolorized by the strain. All the results showed that the addition of a redox mediator can be valuable for treating dye-colored wastewaters.展开更多
Simultaneous removals of dye and nitrate by photo dependent denitrifying sludge(PDDS) have been demonstrated in a continuous flow bench scale reactor. The best C/N for the degradation of azo dyes by PDDS was 1.5. T...Simultaneous removals of dye and nitrate by photo dependent denitrifying sludge(PDDS) have been demonstrated in a continuous flow bench scale reactor. The best C/N for the degradation of azo dyes by PDDS was 1.5. The specific removal rate of azo dye AB92 decreased with a decrease in hydraulic retention time and increased with a decrease in solids retention time. The degradation rate of TOC decreased with a decrease in hydraulic retention time. AB92, which has nitro and hydroxyl substitutions in non para positions, was uniquely degraded. During continuous flow treatment experiments using PDDS, complete degradation of azo dyes AB92 and AO20 at influent concentrations of 40 mg/L and 30 mg/L, respectively, was achieved with an HRT of 16.展开更多
Batches experiments were carried out to study the removal potentials of Moringa oleifera seed presscake( MOSP),the residual solids of Moringa oleifera seed after oil extraction used as a natural coagulant for the remo...Batches experiments were carried out to study the removal potentials of Moringa oleifera seed presscake( MOSP),the residual solids of Moringa oleifera seed after oil extraction used as a natural coagulant for the removal of two direct azo dyes including Direct Red-31( DR-31) and Direct Yellow-12( DY-12). The results indicated that the MOSP contained active proteins which were active agents and efficient for the removal of the two dyes. Higher temperature and lower p H were favorable for dye removal. The removal rates of the two dyes increased with the increasing MOSP dosage. Inorganic salts improved the dye removal efficiencies by the salt-in effect that prompted the release of proteins from the MOSP particles. Suspended solid simulated by kaolin decreased the dye removal efficiencies because of the competition for active sites of the MOSP between the kaolin particles and the dye molecules. The most likely mechanism for the removal of the two dyes by using MOSP as coagulant was a combined effect of adsorption and neutralisation of charges and the nucleation of the MOSP particles. The results provide new insight into the MOSP utilization and development of new coagulant for dye removal.展开更多
Some novel 1:1 and 1 :2 Fe complex azo dyes were synthesized in this study.The mass spectrum analysis of 1:1 and 1:2 Fe complex azo dyes is presented.Lightfastness,rubbing fastness and washing fastness of these meta...Some novel 1:1 and 1 :2 Fe complex azo dyes were synthesized in this study.The mass spectrum analysis of 1:1 and 1:2 Fe complex azo dyes is presented.Lightfastness,rubbing fastness and washing fastness of these metallized complex dyes were evaluated for use on wool.Results show that these dyes are of good lightfastness and satisfactory brown shades.展开更多
Two types of modified silica gels were prepared by adsorption method and bonding method respectively. Enrichment and separation of trace metal ions have been done by using the column packed with modified silica gels.
Photodegradation has emerged as an environmentally friendly method of decomposing harmful dyes in wastewater. In this study, core-shell Fe3O4/SiO2/ TiO2 nanospheres with magnetic cores were obtained from synthesised m...Photodegradation has emerged as an environmentally friendly method of decomposing harmful dyes in wastewater. In this study, core-shell Fe3O4/SiO2/ TiO2 nanospheres with magnetic cores were obtained from synthesised magnetic Fe3O4 nanoparticles through the precipitation method, the surface of the magnetic Fe3O4 nanoparticles was coated with a silica (SiO2) layer by hydrolysis of tetramethoxysilane (TMOS) as a silica source, and finally, Fe3O4/SiO2 nanospheres were coated with titanium (TiO2) layer using tetrabutyltitanate (TBT) as a precursor through the sol-gel process. The morphology and structure of the prepared materials were characterised by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), X-ray energy dispersive spectrometry (EDAX), Fourier transform infrared spectroscopy (FT-IR), and atomic force microscopy (AFM). The photocatalytic activities of the prepared core-shell nanospheres were studied using binary azo dyes, namely methyl orange (anionic dye, MO) and methylene blue (cationic dye, MB) in aqueous solution under UV light irradiation (365 nm), and UV-Vis spectrophotometer was utilised to monitor the amount of each dye in the mixture. It was found that 90.2% and 100% of binary MO and MB were removed for 5 h, respectively. The results revealed that the efficiency of the photocatalytic degradation of the core-shell nanospheres was not degreased after five runs that can be used as recyclable photocatalysts. The results show that the performance of the prepared core-shell nanospheres was better than that of commercial TiO2 nanoparticles. Moreover, the magnetic separation properties of the core-shell Fe3O4/SiO2/TiO2 nanospheres can enable the prepared materials to have wider application prospects.展开更多
This contribution deals with simple way of polypyrrole structure modification. Using azo dyes in polymerization reaction as soft-template with similar molecular structure but different type and distribution of substit...This contribution deals with simple way of polypyrrole structure modification. Using azo dyes in polymerization reaction as soft-template with similar molecular structure but different type and distribution of substitution groups lead to formation of one-dimensional and newly also three-dimensional polypyrrole micro/nanostructures. These structures are characteristic with geometrical symmetry and uniformity. Geometry of prepared structures was studied by scanning electron microscopy (SEM) and by methods of image analysis;nanotubes are hundreds of nm in diameter and units of μm in length, new tree-dimensional structures have units of μm in diameter. Infrared spectra (ATR-FTIR) confirmed that azo dyes work only as intermediate supporting structures without reaction with polypyrrole.展开更多
文摘Bioremediation is an eco-compatible and economical approach to counter textile dye menace. The isolated Lentinus squarrosulus AF5 was assessed for decolourization of textile azo dyes, and had shown ~93%, 88% and 70% decolorization of Reactive blue 160 (RB160), Reactive black 5 (RB5) and Amido black 10B (AB10B) respectively. Further analysis using UV-vis, HPLC, and FTIR, <sup>1</sup>H NMR had shown the degradation of the dyes. Toxicity analysis of the metabolites was performed using seed germination and plant growth on two agriculturally important plants Guar (Cyamopsis tetragonoloba) and wheat (Triticum aestivum) as well as cytotoxicity analysis using the human keratinocyte cell line (HaCaT). The dye mix appeared inhibitory for seed germination (20% - 40%), whereas metabolites were non-inhibitory for germination. Treatment of HaCaT cells with of dye mix and metabolites led into 45% and ~100% of cell viability of HaCaT cells respectively. Therefore, metabolites following degradation of the dye mix were observed to be non-toxic.
基金supported by the National Natural Science Foundation of China(Grant No.52071276)the Natural Science Foundation of Chongqing,China(Grant No.CSTB2022NSCQ-MSX0440)the Fundamental Research Funds for the Central Universities(Grant No.SWUXDJH202313,SWU-KQ22083).
文摘Mg-based amorphous alloys exhibit efficient catalytic performance and excellent biocompatibility with a promising application probability,specifically in the field of azo dye wastewater degradation.However,the problems like difficulty in preparation and poor cycling stability need to be solved.At present,Mg-based amorphous alloys applied in wastewater degradation are available in powder and ribbon.The amorphous alloy powder fabricated by ball milling has a high specific surface area,and its reactivity is thousands of times better than that of gas atomized alloy powder.But the development is limited due to the high energy consumption,difficult and costly process of powder recycling.The single roller melt-spinning method is a new manufacturing process of amorphous alloy ribbon.Compared to amorphous powder,the specific surface area of amorphous ribbon is relatively lower,therefore,it is necessary to carry out surface modification to enhance it.Dealloying is a way that can form a pore structure on the surface of the amorphous alloys,increasing the specific surface area and providing more reactive sites,which all contribute to the catalytic performance.Exploring the optimal conditions for Mg-based amorphous alloys in wastewater degradation by adjusting amorphous alloy composition,choosing suitable method to preparation and surface modification,reducing cost,expanding the pH range will advance the steps to put Mg-based amorphous alloys in industrial environments into practice.
文摘Azo dyes have received considerable attention because of their association with various human health problems. The aim of the investigation is to determine the adsorption behavior ofazo dyes in aqueous solution on DG06, GSE17200, and GSE17201 soils using C. I. Acid Red 14 (AR14) as example. The experimental results indicate that the Freundlich model expresses the adsorption isotherm better than the Langmuir model and the pseudo-second-order model achieves adsorption of AR14 on the three soils well. Based on the pseudo-second-order model, the adsorption thermodynamic of AR14 on DG06 soil have been studied and the thermodynamics parameter of AGO is determined and AGO value shows the adsorption process of AR14 on DG06 is mainly physical in nature. Furthermore, the effects of temperature, pH and salinity (NaC1) on adsorption have been investigated. The decrease in pH or the increase in salinity enhances the adsorption of AR14 by DG06, GSE17200, and GSE17201.
文摘Azo dyes are among the oldest man made chemicals and they are still widely used in the textile, printing and the food industries. About 10%-15% of the total dyes used in the industry is released into the environment during the manufacturing and usage. Some dyes and some of their N substituted aromatic bio transformation products are toxic and/or carcinogenic and therefore these dyes are considered to be environmental pollutants and health hazards. These azo dyes are degraded by physico chemical and biological methods. Of these, biological methods are considered to be the most economical and efficient. In this work, attempts were made to degrade these dyes aerobically. The organisms which were efficient in degrading the following azo dyes Red RB, Remazol Red, Remazol Blue, Remazol Violet, Remazol Yellow, Golden Yellow, Remazol Orange, Remazol Black were isolated from three different sources viz., wastewater treatment plant, paper mill effluent treatment plant and tannery wastewater treatment plant. The efficiency of azo dye degradation by mixed cultures from each source was analyzed. It was found that mixed cultures from tannery treatment plant worked efficiently in decolorizing Remazol Red, Remazol Orange, Remazol Blue and Remazol Violet, while mixed cultures from the paper mill effluent worked efficiently in decolorizing Red RB, Golden Yellow and Remazol Yellow. The mixed cultures from wastewater treatment plant efficiently decolorized Remazol Black.
文摘A azoreductase gene with 537 bp was obtained by PCR amplification from Rhodobacter sphaeroides AS1 1737 The enzyme, with a molecular weight of 18 7 kD, was efficiently expressed in Escherichia coli and its biodegradation characteristics for azo dyes were investigated. Furthermore, the reaction kinetics and mechanism of azo dyes catalyzed by the genetically engineered azoreductase were studied in detail. The presence of a hydrazo-intermediate was identified, which provided a convincing evidence for the assumption that azo dyes were degraded via an incomplete reduction stage.
文摘The effects of various quinone compounds on the decolorization rates of sulfonated azo dyes by Sphingomonas xenophaga QYY were investigated. The results showed that anthraquinone-2-sulfonate (AQS) was the most effective redox mediator and AQS reduction was the rate-limited step of AQS-mediated decolorization of sulfonated azo dyes. Based on AQS biological toxicity tests, it was assumed that AQS might enter the cells and kill them. In the cytoplasmic extracts from strain QYY, AQS more effectively increased decolorization rates of sulfonated azo dyes than other quinone compounds. In addition, we found a NADH/FMN-dependent AQS reductase using nondenaturing polyacrylamide gel electrophoresis (Native-PAGE).
文摘In this study,6-chloro-4-hydroxy-2-quinolone and 6-flouro-4-hydroxy-2-quinolone were synthesized from corresponding dianilides.These compounds were coupled with some diazotized aromatic amines to give the corresponding azo disperse dyes.The structures of the quinolone derivatives and new azo dyes were confirmed by UV-vis,FT-IR,;H NMR and elemental analysis.
文摘A bacterial strain was isolated from activated sludge and has been identified as Pseudomonas sp. S-42 capable of decolorizing azo dyes such as Diamira Brilliant Orange RR (DBO-RR), Direct Brown M (DBM), Eriochrome Brown R (EBR) and so on. The growing cells, intact cells, cell-free extract and purified enzyme of strain S-42 could decolorize azo dyes under similar conditions at the optimum pH 7.0 and temperature of 37℃. The efficiencies of decolorization for DBO-RR, DBM, EBR with intact cells stood more than 90%. When the cell concentration was 15mg (wet)/ml and the reaction time was 5 hours, the decolorizing activities of intact cells for above three azo dyes were 1.75, 2.4, 0.95 μg dye/mg cell, respectively. Cell-free extract and purified enzyme belonged to azoreductase with molecular weight about 34000±2000 and Vmax and Km values for DBO-RR of 13μmol/mg protein/nun and 54μmol, respectively. The results from the detection of the biodegradation products of DBO-RR by spectrophotometric and NaNO2 reaction methods showed that the biodegradation of azo dyes was initiated by the reducing cleavage of azo bonds. The biodegradation metabolism path for DBO-RR by Psued. S-42 was hypothesized.
文摘The feasibility of photocatalytic degradation of X 3B azo dye by TiO 2/beads photocatalyst was studied. The effects of parameters such as the amount of TiO 2/beads, airflow, as well as the concentrations of H 2O 2, Fe 3+ , Mg 2+ and Na + on the photocatalytic degradation of X 3B azo dye were also studied. The results showed that 25 mg/dm 3 X 3B azo dye can be photocatalytically degraded completely by 30 min illumination with a 375W medium pressure mercury lamp. Adding a small amount of H 2O 2 or Fe 3+ , the efficiencies of photocatalytic degradation of X 3B azo dye were increased rapidly. The mechanisms of the reaction and the role of the additives were also investigated. After 120 hours TiO 2/beads showed no significant loss of the photocatalytic activity.
基金National Natural Science Foundation of China(No.20773093)Tianjin Municipal Science Programme Foundation,China(No.043605911)
文摘Two azo dyes,C.I.Reactive Red 195(RR195)and C.I.Acid Black 234(AB234)were degraded by photocatalysis of Fe(Ⅲ)-oxalate complexes/H2O2 in aqueous non-ionic surfactant,Triton X-100(TX-100)solution.Some factors affecting the dye degradation such as TX-100 concentration,irradiation intensity,and sodium chloride were investigated.The interaction and competition between dye and TX-100 during the degradation were also examined using spectrophotometry and maximum bubble pressure method,respectively.The results indicated that TX-100 showed a significant reduction effect on degradation of two azo dyes,but which was largely confined to TX-100 concentration below the Critical Micellar Concentration(CMC).And the reduction was considerably decreased above the CMC,especially in the case of AB234.Moreover,the reducing effect of TX-100 on dye degradation almost did not vary with irradiation intensity.And the impact of sodium chloride on dye degradation was limited by the addition of TX-100.
基金the kind support of this work from Key Laboratory of Biomass Fibers&Eco-Dyeing&Finishing,Hubei Province(STRZ2019015)the Innovation Platform Projects of Wuhan Textile University(183052)。
文摘Palladium nanoparticles(PdNPs)were synthesized in a green way using sodium alginate functioning as both reductant and stabilizer.The formation of as-synthesized Pd NPs was supervised by Ultraviolet–visible(UV–Vis)spectroscopy and confirmed by the surface plasmon resonance(SPR)band.The effect of several synthesis factors such as precursor ratio,solution p H,reaction time,and temperature were investigated by the factorial design of experiments in order to optimize the experimental conditions.The optimal synthesis parameters were achieved by heating 1.0 ml of 1.0%sodium alginate(SA),3.0 ml of 10-2 mol·L-1 H2PdCl4 at 80°C for a period of 30 min in a neutral reaction medium(pH=6).High-resolution transmission electron microscope(HRTEM),energy dispersive X-ray(EDX)spectroscopy,selected area electron diffraction(SAED)pattern,X-ray powder diffraction(XRD),and dynamic light scattering(DLS)were used to confirm the uniform spherical shapes and high crystallinity of Pd NPs with average particle size of(2.12±1.42)nm.The SEM images show the distribution of Pd NPs presented among the SA.FTIR spectra indicate that SA is a good capping agent to stabilize Pd NPs for a long time.The catalytic degradation of model azo-dyes such as mono-azo(Cibacron Yellow FN–2R)and di-azo(Cibacron Deep Red S–B)were confirmed the catalytic activity of Pd NPs.The Pd NPs can accelerate the degradation rate by more than 80 and 10 times respectively as confirmed by kinetics constant(k)values.
文摘In the present study, the effects of various quinone compounds on the decolorization rates of azo dyes by the E. coli strain CD-2 were investigated. The results showed that Lawsone was the most effective redox mediator. The optimum concentration for Lawsone is 0.1 mmol/L. The effects of physic-chemical parameters on the Methyl Orange degradation by the strain were determined. The results indicated that, in the quinone mediated decolorization system, strain CD-2 exhibited a good degradation ability in the range of pH from 4 to 9, temperature from 20°C to 50°C and salinity from 1% to 6%. With Lawsone as a redox mediator, a broad spectrum of azo dyes with different structures could be decolorized by the strain. All the results showed that the addition of a redox mediator can be valuable for treating dye-colored wastewaters.
文摘Simultaneous removals of dye and nitrate by photo dependent denitrifying sludge(PDDS) have been demonstrated in a continuous flow bench scale reactor. The best C/N for the degradation of azo dyes by PDDS was 1.5. The specific removal rate of azo dye AB92 decreased with a decrease in hydraulic retention time and increased with a decrease in solids retention time. The degradation rate of TOC decreased with a decrease in hydraulic retention time. AB92, which has nitro and hydroxyl substitutions in non para positions, was uniquely degraded. During continuous flow treatment experiments using PDDS, complete degradation of azo dyes AB92 and AO20 at influent concentrations of 40 mg/L and 30 mg/L, respectively, was achieved with an HRT of 16.
基金the Research and Demonstration of Key Technology of Pollution Control for Heavily Polluting Industries in the Upper and Middle Reaches of Shaying River,China(No.2009ZX07210-002)The Opening Fund of State Key Laboratory of Pollution Control&Resource Reuse of Nanjing University,China(No.PCRRF12016)
文摘Batches experiments were carried out to study the removal potentials of Moringa oleifera seed presscake( MOSP),the residual solids of Moringa oleifera seed after oil extraction used as a natural coagulant for the removal of two direct azo dyes including Direct Red-31( DR-31) and Direct Yellow-12( DY-12). The results indicated that the MOSP contained active proteins which were active agents and efficient for the removal of the two dyes. Higher temperature and lower p H were favorable for dye removal. The removal rates of the two dyes increased with the increasing MOSP dosage. Inorganic salts improved the dye removal efficiencies by the salt-in effect that prompted the release of proteins from the MOSP particles. Suspended solid simulated by kaolin decreased the dye removal efficiencies because of the competition for active sites of the MOSP between the kaolin particles and the dye molecules. The most likely mechanism for the removal of the two dyes by using MOSP as coagulant was a combined effect of adsorption and neutralisation of charges and the nucleation of the MOSP particles. The results provide new insight into the MOSP utilization and development of new coagulant for dye removal.
文摘Some novel 1:1 and 1 :2 Fe complex azo dyes were synthesized in this study.The mass spectrum analysis of 1:1 and 1:2 Fe complex azo dyes is presented.Lightfastness,rubbing fastness and washing fastness of these metallized complex dyes were evaluated for use on wool.Results show that these dyes are of good lightfastness and satisfactory brown shades.
文摘Two types of modified silica gels were prepared by adsorption method and bonding method respectively. Enrichment and separation of trace metal ions have been done by using the column packed with modified silica gels.
文摘Photodegradation has emerged as an environmentally friendly method of decomposing harmful dyes in wastewater. In this study, core-shell Fe3O4/SiO2/ TiO2 nanospheres with magnetic cores were obtained from synthesised magnetic Fe3O4 nanoparticles through the precipitation method, the surface of the magnetic Fe3O4 nanoparticles was coated with a silica (SiO2) layer by hydrolysis of tetramethoxysilane (TMOS) as a silica source, and finally, Fe3O4/SiO2 nanospheres were coated with titanium (TiO2) layer using tetrabutyltitanate (TBT) as a precursor through the sol-gel process. The morphology and structure of the prepared materials were characterised by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), X-ray energy dispersive spectrometry (EDAX), Fourier transform infrared spectroscopy (FT-IR), and atomic force microscopy (AFM). The photocatalytic activities of the prepared core-shell nanospheres were studied using binary azo dyes, namely methyl orange (anionic dye, MO) and methylene blue (cationic dye, MB) in aqueous solution under UV light irradiation (365 nm), and UV-Vis spectrophotometer was utilised to monitor the amount of each dye in the mixture. It was found that 90.2% and 100% of binary MO and MB were removed for 5 h, respectively. The results revealed that the efficiency of the photocatalytic degradation of the core-shell nanospheres was not degreased after five runs that can be used as recyclable photocatalysts. The results show that the performance of the prepared core-shell nanospheres was better than that of commercial TiO2 nanoparticles. Moreover, the magnetic separation properties of the core-shell Fe3O4/SiO2/TiO2 nanospheres can enable the prepared materials to have wider application prospects.
文摘This contribution deals with simple way of polypyrrole structure modification. Using azo dyes in polymerization reaction as soft-template with similar molecular structure but different type and distribution of substitution groups lead to formation of one-dimensional and newly also three-dimensional polypyrrole micro/nanostructures. These structures are characteristic with geometrical symmetry and uniformity. Geometry of prepared structures was studied by scanning electron microscopy (SEM) and by methods of image analysis;nanotubes are hundreds of nm in diameter and units of μm in length, new tree-dimensional structures have units of μm in diameter. Infrared spectra (ATR-FTIR) confirmed that azo dyes work only as intermediate supporting structures without reaction with polypyrrole.