Nanosized zero-valent iron (NZVI) supported on the cation exchange resin was synthesized and applied to decompose some water soluble azo dyes. The decomposition efficiency for azo dyes was evaluated by using the aqueo...Nanosized zero-valent iron (NZVI) supported on the cation exchange resin was synthesized and applied to decompose some water soluble azo dyes. The decomposition efficiency for azo dyes was evaluated by using the aqueous suspensions and parked column of this material. Batch experiments indicated that this novel material exhibited excellent degradation ability for 0.05 g·L1 of Acid Orange 7, Acid Orange 8, Acid Orange 10, Sunset Yellow, and Methyl Orange, with decolorization ratio up to 95% in 4 min; pH value was the key factor for degradation and H+ was one of the reactants; adsorption of azo dyes onto the material existed at the beginning but reduced gradually until disappearing completely. For the packed column system, 58%~90% of azo dyes were decomposed in the 1st circle of solution passing through the column, and the adsorption onto the materials could accelerate the degradation azo dyes with the increasing reaction time. During the degradation process, Fe2+, the product of NZVI, was exchanged to the resin again and could be reduced to Fe0 by KBH4 for reusing. The 10th refreshed NZVI possessed reductive activity up to 90% of the newly systhesized NZVI. Decomposing pollutants in the aqueous solution with columns packed with NZVI immobilized on the cation exchange resin is a promising technology that can solve the reclaiming and refreshing problem of NZVI.展开更多
Iron(Ⅲ) loaded novolac-based network adsorbents 1 and 2 were studied for efficient removal of azo-dye pollutants from aqueous solutions. The adsorption behavior was evaluated by using methyl orange and orange-G as mo...Iron(Ⅲ) loaded novolac-based network adsorbents 1 and 2 were studied for efficient removal of azo-dye pollutants from aqueous solutions. The adsorption behavior was evaluated by using methyl orange and orange-G as model azo dyes. The effect of parameters such as contact time and initial dye concentration on the adsorption of azo dyes was studied. The results showed that loading of Fe(Ⅲ) onto the sorbent networks has noticeable effect on azo-dye sorption capacity. The adsorption equilibrium data were fitted to Freundlich isotherm model. Besides, the reusability of the dye loaded sorbents was investigated on adjusting pH of solutions.展开更多
Nanocrystalline La^3+-doped TiO2 of 20-30 nm in size was prepared by a sol-gel technique. The photocatalytic activities of the samples were evaluated by the degradation of harmful acid orange 7(AO7) azo-dye in aque...Nanocrystalline La^3+-doped TiO2 of 20-30 nm in size was prepared by a sol-gel technique. The photocatalytic activities of the samples were evaluated by the degradation of harmful acid orange 7(AO7) azo-dye in aqueous solution. The effects of La^3+ ion implantation on the photocatalytic activity of TiO2 were also discussed. The results show that the La^3+ content plays an essential role in affecting the photocatalytic activity of the La^3+-doped TiO2 and the optimum content of La^3+-doped is 1.0 wt.%. The photocatalytic activity of the samples with La^3+-doped TiO2 is higher than that of pure TiO2 in the treatment of AO7 wastewater. The photodegradation effect of AO7 effluent is the best by means of La^3+-doped TiO2 with 1.0% La^3+.展开更多
The photoinduced birefringence in an azobenzene polymer is investigated at different temperatures between -20℃ to 50℃. It is found that there is a peak value of photoinduced birefringence in the temperature dependen...The photoinduced birefringence in an azobenzene polymer is investigated at different temperatures between -20℃ to 50℃. It is found that there is a peak value of photoinduced birefringence in the temperature dependence of the photoinduced birefringence under a certain pumping intensity. With the pump light in 90mW/cm^2, the peak value of the photoinduced birefringence appeared at about 0℃ C. The effect of temperature on the photoinduced birefringence is discussed using the competition mechanism between the photoinduced reorientation and the thermal random motion.展开更多
Global solar radiation is recorded by fading of the colored film into which azo-dye is impregnated with use of organic solvent. Oil Red O, Sudan I, Sudan IV and Pyridylazonaphthol are used as the azo dye. These films ...Global solar radiation is recorded by fading of the colored film into which azo-dye is impregnated with use of organic solvent. Oil Red O, Sudan I, Sudan IV and Pyridylazonaphthol are used as the azo dye. These films can be applied to measure the solar radiation in many kinds of environmental or ecological conditions. The merits of the film compared with usual measurements are to be: unnecessary of any electric sources; cheap and mass-productive easily; suitable to integrate solar radiation for long time; easy dealing in out-door or underwater conditions; possible to use on leaves of any plants because of light weight; possible to use in a lot of points at the same time.展开更多
The effect of interaction between liquid crystal (LC) and photoalignment material on the speed of optical rewriting process is investigated. The theoretical analysis shows that a smaller frank elastic constant K22 o...The effect of interaction between liquid crystal (LC) and photoalignment material on the speed of optical rewriting process is investigated. The theoretical analysis shows that a smaller frank elastic constant K22 of liquid crystal corresponds to a larger twist angle, which gives rise to a larger rewriting speed. Six different LC cells with the same boundary conditions (one substrate is covered with rubbed polyimide (PI) and the other with photo sensitive rewritable sulfuric dye I(SD1)) are tested experimentally under the same illumination intensity (450 nm, 80 mW/cm2). The results demonstrate that with a suitable liquid crystal, the LC optical rewriting speed for e-paper application can be obviously improved. For two well known LC materials E7 (K22 is larger) and 5CB (K22 is smaller), they require 11 s and 6 s corresponding to change alignment direction for generating image information.展开更多
Since the azo dyes widely used in textile-dyeing industry are toxic, highly persistent, and ubiquitously distributed in the environment, their treatment efficiencies and fade in ecosystems have received worldwide atte...Since the azo dyes widely used in textile-dyeing industry are toxic, highly persistent, and ubiquitously distributed in the environment, their treatment efficiencies and fade in ecosystems have received worldwide attention. Due to the microbes play important roles in azo-dye degradation, exogenous nutrient addition is used as a promising biostimulation strategy to improve the treatment efficiencies of azo-dye wastewater. However, little is known about the effects of different kinds of exogenous nutrients on the azo-dye wastewater treatment directly. Here, three kinds of common nutrients, glucose, starch and yeast extract, were added to the sequencing batch reactors (SBR) for the treatment of wastewater containing acid red 73 to compare the biostimulation efficiencies by investigating the dye's removal efficiencies and the changes of related water qualities. Our results showed that the reactors added yeast extract had highest removal efficiencies and chemical oxygen demand (COD) as well, followed by glucose and starch. The removal rates of acid red 73 and COD were 90.63% and 8713% in the reactors added yeast extract, respectively, while 86.49% and 78.4% in those with glucose and 85.38% and 75.2% in those with starch. This study provided some useful information for the biostimulation strategy of azo-dye wastewater treatment and preliminarily suggested that yeast extract would be the optimal choice.展开更多
Synthesis of the optoelectronic storage material with structure for coating by nanosized metal and azo-dye was reported. The characterization of composites was made by using transmission electron microscope (TEM), u...Synthesis of the optoelectronic storage material with structure for coating by nanosized metal and azo-dye was reported. The characterization of composites was made by using transmission electron microscope (TEM), ultraviolet-visible spectrometer (UV-Vis) and thermogravity analyzer (TGA). It is found that, due to the specific structure, in which azo-dye molecules are oriented and adsorbed on the spherical surface of nanosized metal, the absorption maximum of azo-dye methyl orange shift towards shorter wavelength band. The experimental results show that the proposed technique here wouM offer a promising way to synthesize short wavelength optoelectronic storage material by doping of metal nanoparticles coated with dyes in polymer. Furthermore, the composites based on the structure can present excellent thermal properties suitable for the requirements of optical storage. This new type of material is capable of matching semiconductor laser (GaN) in optoelectronic storage technology.展开更多
Bandgap tuning using rare earth metals as dopants in ferrite-based photocatalytic materials has received a lot of interest because the Fermi 4f energy of these metals generates a sub-energy state in the bandgap genera...Bandgap tuning using rare earth metals as dopants in ferrite-based photocatalytic materials has received a lot of interest because the Fermi 4f energy of these metals generates a sub-energy state in the bandgap generated by the overlapping of Fe-3d and O-2p orbitals.Herein,dysprosium-doped cobalt-nickel mixed ferrite(D-CNFO)and its graphene-reinforced composite(D-CNFO@G)were prepared and an ideal photocatalyst material for azo dye mineralization was proposed.A cost-effective combination of wetchemical and ultrasonication methods was used to prepare the doped and composite samples.Advanced characterization methodologies were used to scrutinize the optical,compositional,structural,morphological,and photocatalytic characteristics of as-prepared materials.The X-ray diffraction analysis identified the spinel phase's(cubic)structure,while the electronic spectroscopy examination confirmed the prepared samples'rod-like morphology.The UV/visible absorbance spectrum shows the higher light harvesting behavior of the D-CNFO@G in the visible region.The mineralization performance of the DCNFO and D-CNFO@G composites was analyzed using Congo-red(an anionic dye),a well-known azo dye.The D-CNFO@G sample removes Congo-red dye at a rate almost 2.4%faster than the D-CNFO sample.The experiment involving trapping free radicals indicates that hydroxyl radical play s a crucial role in dye degradation.Since the D-CNFO@G catalyst is magnetic and can be isolated easily from the photocatalytic system,it shows an awkward cycle activity of more than 96%after five mineralization tests.The asprepared D-CNFO@G composite is proved as an excellent option for azo dye mineralization because of the combined impacts of rare earth doping,graphene reinforcement and nanotechnology.展开更多
A series of three-dimensional opal photonic crystals based on the polymer was synthesized and applied inthe field of photo-induced birefringence. The data show that the photo-induced birefringence(PIB) of pure Sudan...A series of three-dimensional opal photonic crystals based on the polymer was synthesized and applied inthe field of photo-induced birefringence. The data show that the photo-induced birefringence(PIB) of pure Sudan IIIfilm could be enhanced by increasing the thickness of azo films. When Sudan III was distributed on thethree-dimensional opal photonic crystals, the photo-induced birefringence process could be modulated. In addition,the data also exhibit that the PIB processes with different pumping polarization directions are sensitive to the role ofphotonic crystals. The results could be beneficial to further understanding the photo-induced birefringence and uti-lizing the photonic crystals.展开更多
基金the National Natural Science Foundation of China (Grant No. 20537020)
文摘Nanosized zero-valent iron (NZVI) supported on the cation exchange resin was synthesized and applied to decompose some water soluble azo dyes. The decomposition efficiency for azo dyes was evaluated by using the aqueous suspensions and parked column of this material. Batch experiments indicated that this novel material exhibited excellent degradation ability for 0.05 g·L1 of Acid Orange 7, Acid Orange 8, Acid Orange 10, Sunset Yellow, and Methyl Orange, with decolorization ratio up to 95% in 4 min; pH value was the key factor for degradation and H+ was one of the reactants; adsorption of azo dyes onto the material existed at the beginning but reduced gradually until disappearing completely. For the packed column system, 58%~90% of azo dyes were decomposed in the 1st circle of solution passing through the column, and the adsorption onto the materials could accelerate the degradation azo dyes with the increasing reaction time. During the degradation process, Fe2+, the product of NZVI, was exchanged to the resin again and could be reduced to Fe0 by KBH4 for reusing. The 10th refreshed NZVI possessed reductive activity up to 90% of the newly systhesized NZVI. Decomposing pollutants in the aqueous solution with columns packed with NZVI immobilized on the cation exchange resin is a promising technology that can solve the reclaiming and refreshing problem of NZVI.
文摘Iron(Ⅲ) loaded novolac-based network adsorbents 1 and 2 were studied for efficient removal of azo-dye pollutants from aqueous solutions. The adsorption behavior was evaluated by using methyl orange and orange-G as model azo dyes. The effect of parameters such as contact time and initial dye concentration on the adsorption of azo dyes was studied. The results showed that loading of Fe(Ⅲ) onto the sorbent networks has noticeable effect on azo-dye sorption capacity. The adsorption equilibrium data were fitted to Freundlich isotherm model. Besides, the reusability of the dye loaded sorbents was investigated on adjusting pH of solutions.
基金[This work was financially supported by the Science and Technology Department Foundation of Hunan Province (No. 02JJY2015), and the Doctorate Foundation of Changsha University of Science and Technology (No. 04xxrc037).]
文摘Nanocrystalline La^3+-doped TiO2 of 20-30 nm in size was prepared by a sol-gel technique. The photocatalytic activities of the samples were evaluated by the degradation of harmful acid orange 7(AO7) azo-dye in aqueous solution. The effects of La^3+ ion implantation on the photocatalytic activity of TiO2 were also discussed. The results show that the La^3+ content plays an essential role in affecting the photocatalytic activity of the La^3+-doped TiO2 and the optimum content of La^3+-doped is 1.0 wt.%. The photocatalytic activity of the samples with La^3+-doped TiO2 is higher than that of pure TiO2 in the treatment of AO7 wastewater. The photodegradation effect of AO7 effluent is the best by means of La^3+-doped TiO2 with 1.0% La^3+.
基金Supported by the National Natural Science Foundation of China under Grant No 10675083, and the Applied Materials Shanghai Research and Development Fund (0416).
文摘The photoinduced birefringence in an azobenzene polymer is investigated at different temperatures between -20℃ to 50℃. It is found that there is a peak value of photoinduced birefringence in the temperature dependence of the photoinduced birefringence under a certain pumping intensity. With the pump light in 90mW/cm^2, the peak value of the photoinduced birefringence appeared at about 0℃ C. The effect of temperature on the photoinduced birefringence is discussed using the competition mechanism between the photoinduced reorientation and the thermal random motion.
文摘Global solar radiation is recorded by fading of the colored film into which azo-dye is impregnated with use of organic solvent. Oil Red O, Sudan I, Sudan IV and Pyridylazonaphthol are used as the azo dye. These films can be applied to measure the solar radiation in many kinds of environmental or ecological conditions. The merits of the film compared with usual measurements are to be: unnecessary of any electric sources; cheap and mass-productive easily; suitable to integrate solar radiation for long time; easy dealing in out-door or underwater conditions; possible to use on leaves of any plants because of light weight; possible to use in a lot of points at the same time.
基金Project supported by the Science Foundation of Hong Kong University of Science and Technology (HKUST) (Grant Nos. CERG612208,CERG RPC07/08.EG01,CERG 612208/614408,CERG 612409,and CERG 612310)
文摘The effect of interaction between liquid crystal (LC) and photoalignment material on the speed of optical rewriting process is investigated. The theoretical analysis shows that a smaller frank elastic constant K22 of liquid crystal corresponds to a larger twist angle, which gives rise to a larger rewriting speed. Six different LC cells with the same boundary conditions (one substrate is covered with rubbed polyimide (PI) and the other with photo sensitive rewritable sulfuric dye I(SD1)) are tested experimentally under the same illumination intensity (450 nm, 80 mW/cm2). The results demonstrate that with a suitable liquid crystal, the LC optical rewriting speed for e-paper application can be obviously improved. For two well known LC materials E7 (K22 is larger) and 5CB (K22 is smaller), they require 11 s and 6 s corresponding to change alignment direction for generating image information.
基金supported by the National Natural Science Foundation of China(51308133)Guangdong Provincial National Natural Science Foundation(2014A030308019)+1 种基金Science and Technology Planning Project of Guangdong Province(2015A020215016)the support of Guangdong Institute of Microbiology
文摘Since the azo dyes widely used in textile-dyeing industry are toxic, highly persistent, and ubiquitously distributed in the environment, their treatment efficiencies and fade in ecosystems have received worldwide attention. Due to the microbes play important roles in azo-dye degradation, exogenous nutrient addition is used as a promising biostimulation strategy to improve the treatment efficiencies of azo-dye wastewater. However, little is known about the effects of different kinds of exogenous nutrients on the azo-dye wastewater treatment directly. Here, three kinds of common nutrients, glucose, starch and yeast extract, were added to the sequencing batch reactors (SBR) for the treatment of wastewater containing acid red 73 to compare the biostimulation efficiencies by investigating the dye's removal efficiencies and the changes of related water qualities. Our results showed that the reactors added yeast extract had highest removal efficiencies and chemical oxygen demand (COD) as well, followed by glucose and starch. The removal rates of acid red 73 and COD were 90.63% and 8713% in the reactors added yeast extract, respectively, while 86.49% and 78.4% in those with glucose and 85.38% and 75.2% in those with starch. This study provided some useful information for the biostimulation strategy of azo-dye wastewater treatment and preliminarily suggested that yeast extract would be the optimal choice.
基金Supported by the National Natural Science Foundation of China (No. 50271038) and the Key Research Project Foundation of Shaanxi Normal University (No.200403)
文摘Synthesis of the optoelectronic storage material with structure for coating by nanosized metal and azo-dye was reported. The characterization of composites was made by using transmission electron microscope (TEM), ultraviolet-visible spectrometer (UV-Vis) and thermogravity analyzer (TGA). It is found that, due to the specific structure, in which azo-dye molecules are oriented and adsorbed on the spherical surface of nanosized metal, the absorption maximum of azo-dye methyl orange shift towards shorter wavelength band. The experimental results show that the proposed technique here wouM offer a promising way to synthesize short wavelength optoelectronic storage material by doping of metal nanoparticles coated with dyes in polymer. Furthermore, the composites based on the structure can present excellent thermal properties suitable for the requirements of optical storage. This new type of material is capable of matching semiconductor laser (GaN) in optoelectronic storage technology.
基金supported by Researchers Supporting Project(RSP2023R100),King Saud University,Riyadh,Saudi Arabiathe support provided by the Statutory City of Ostrava,Czechia through Research Grant"Global Experts"。
文摘Bandgap tuning using rare earth metals as dopants in ferrite-based photocatalytic materials has received a lot of interest because the Fermi 4f energy of these metals generates a sub-energy state in the bandgap generated by the overlapping of Fe-3d and O-2p orbitals.Herein,dysprosium-doped cobalt-nickel mixed ferrite(D-CNFO)and its graphene-reinforced composite(D-CNFO@G)were prepared and an ideal photocatalyst material for azo dye mineralization was proposed.A cost-effective combination of wetchemical and ultrasonication methods was used to prepare the doped and composite samples.Advanced characterization methodologies were used to scrutinize the optical,compositional,structural,morphological,and photocatalytic characteristics of as-prepared materials.The X-ray diffraction analysis identified the spinel phase's(cubic)structure,while the electronic spectroscopy examination confirmed the prepared samples'rod-like morphology.The UV/visible absorbance spectrum shows the higher light harvesting behavior of the D-CNFO@G in the visible region.The mineralization performance of the DCNFO and D-CNFO@G composites was analyzed using Congo-red(an anionic dye),a well-known azo dye.The D-CNFO@G sample removes Congo-red dye at a rate almost 2.4%faster than the D-CNFO sample.The experiment involving trapping free radicals indicates that hydroxyl radical play s a crucial role in dye degradation.Since the D-CNFO@G catalyst is magnetic and can be isolated easily from the photocatalytic system,it shows an awkward cycle activity of more than 96%after five mineralization tests.The asprepared D-CNFO@G composite is proved as an excellent option for azo dye mineralization because of the combined impacts of rare earth doping,graphene reinforcement and nanotechnology.
文摘A series of three-dimensional opal photonic crystals based on the polymer was synthesized and applied inthe field of photo-induced birefringence. The data show that the photo-induced birefringence(PIB) of pure Sudan IIIfilm could be enhanced by increasing the thickness of azo films. When Sudan III was distributed on thethree-dimensional opal photonic crystals, the photo-induced birefringence process could be modulated. In addition,the data also exhibit that the PIB processes with different pumping polarization directions are sensitive to the role ofphotonic crystals. The results could be beneficial to further understanding the photo-induced birefringence and uti-lizing the photonic crystals.