期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
嘧菌酯及SHAM对4种植物病原真菌的活性和作用方式研究 被引量:34
1
作者 金丽华 陈长军 +2 位作者 王建新 陈雨 周明国 《中国农业科学》 CAS CSCD 北大核心 2007年第10期2206-2213,共8页
【目的】明确嘧菌酯对4种病原真菌的活性及旁路氧化酶抑制剂水杨肟酸(SHAM)的协同增效作用,探讨嘧菌酯抑制菌丝呼吸的作用机理及旁路氧化的作用。【方法】测定嘧菌酯单独使用或和SHAM协同使用对病原真菌菌丝生长和孢子萌发的抑制及对其... 【目的】明确嘧菌酯对4种病原真菌的活性及旁路氧化酶抑制剂水杨肟酸(SHAM)的协同增效作用,探讨嘧菌酯抑制菌丝呼吸的作用机理及旁路氧化的作用。【方法】测定嘧菌酯单独使用或和SHAM协同使用对病原真菌菌丝生长和孢子萌发的抑制及对其它生物学性状的影响。利用氧电极溶氧仪测定嘧菌酯及SHAM对4种病原真菌菌丝呼吸耗氧的影响。【结果】嘧菌酯对辣椒炭疽病菌(辣椒炭疽)、黄瓜灰霉病菌、水稻纹枯病菌、稻瘟病菌的菌丝生长,对辣椒炭疽病菌、黄瓜灰霉病菌和稻瘟病菌的孢子萌发、孢子产生,对水稻纹枯病菌的菌核生成有抑制作用以及对辣椒炭疽病菌和稻瘟病菌的黑色素形成稍有延缓作用。SHAM对嘧菌酯毒力有显著的增效作用。菌丝耗氧率测定表明嘧菌酯在作用的初始阶段对4种病原真菌的菌丝呼吸均有抑制,抑制作用随药剂浓度提高而增强。随处理时间延长,菌丝恢复呼吸且呼吸作用的恢复不受SHAM抑制。【结论】延长处理时间情况下嘧菌酯丧失对菌丝呼吸耗氧的抑制作用,不是旁路氧化作用引起的,而是存在其它机制。 展开更多
关键词 嘧菌酯 水杨肟酸(SHAM) 植物病原真菌 孢子萌发 菌落生长 耗氧率
下载PDF
Activity of Azoxystrobin and SHAM to Four Phytopathogens 被引量:2
2
作者 JIN Li-hua CHEN Yu CHEN Chang-jun WANG Jian-xin ZHOU Ming-guo 《Agricultural Sciences in China》 CAS CSCD 2009年第7期835-842,共8页
The study was conducted to make clear the activity of azoxystrobin to 4 plant pathogens and the synergistic effects of salicylhydroxamic acid (SHAM), which acted on the alternative oxidase. It was also conducted to ... The study was conducted to make clear the activity of azoxystrobin to 4 plant pathogens and the synergistic effects of salicylhydroxamic acid (SHAM), which acted on the alternative oxidase. It was also conducted to be aware of the mechanism of azoxystrobin in inhibition on mycelial respiration and the influence of SHAM. The activity test of azoxystrobin and SHAM was carried out with a mycelial linear growth test and spore germination test. Other related biological properties were also observed. Inhibition of azoxystrobin and SHAM on 4 pathogens was determined by using SP-II oxygraph system. Azoxystrobin inhibited mycelial growth in Colletotrichum capsici, Botrytis cinerea, Rhizoctonia solani, and Magnaporthe grisea, respectively; it also inhibited conidia germination, and conidia production in C. capsici, B. cinerea M. grisea, and sclerotia formation in R. solani. Moreover, it created stayed pigment biosynthesis in C. capsici and M. grisea somehow. Salicylhydroxamic acid enhanced inhibition by azoxystrobin. An oxygen consuming test of the mycelia showed that azoxystrobin inhibited all the 4 fungi's respiration in the early stages. With the concentration rising up, the effectiveness increased. However, as time went on, the respiration of the mycelia treated with fungicides recovered and SHAM could not inhibit the oxygen consuming. This reaction between the mycelia and the fungicides appeared not to initiate alternative respiration but rather the other mechanism created a lack of efficacy. 展开更多
关键词 azoxstrobin salicylhydroxamic acid (SHAM) plant pathogens spore germination mycelial growth oxygenconsumption rate
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部