This research paper has provided the methodology and design for implementing the hybrid author recommender system using Azure Data Lake Analytics and Power BI. It offers a recommendation for the top 1000 Authors of co...This research paper has provided the methodology and design for implementing the hybrid author recommender system using Azure Data Lake Analytics and Power BI. It offers a recommendation for the top 1000 Authors of computer science in different fields of study. The technique used in this paper is handling the inadequate Information for citation;it removes the problem of cold start, which is encountered by very many other recommender systems. In this paper, abstracts, the titles, and the Microsoft academic graphs have been used in coming up with the recommendation list for every document, which is used to combine the content-based approaches and the co-citations. Prioritization and the blending of every technique have been allowed by the tuning system parameters, allowing for the authority in results of recommendation versus the paper novelty. In the end, we do observe that there is a direct correlation between the similarity rankings that have been produced by the system and the scores of the participant. The results coming from the associated scrips of analysis and the user survey have been made available through the recommendation system. Managers must gain the required expertise to fully utilize the benefits that come with business intelligence systems [1]. Data mining has become an important tool for managers that provides insights about their daily operations and leverage the information provided by decision support systems to improve customer relationships [2]. Additionally, managers require business intelligence systems that can rank the output in the order of priority. Ranking algorithm can replace the traditional data mining algorithms that will be discussed in-depth in the literature review [3].展开更多
Windows Azure作为微软公司赢在未来的云计算平台,具有许多新的特性,正逐渐受到业界的青睐,因此在现阶段研究基于该平台来设计和开发大规模Web应用程序十分必要。首先分析Windows Azure云服务中与编程相关的关键组件,如计算服务、存储...Windows Azure作为微软公司赢在未来的云计算平台,具有许多新的特性,正逐渐受到业界的青睐,因此在现阶段研究基于该平台来设计和开发大规模Web应用程序十分必要。首先分析Windows Azure云服务中与编程相关的关键组件,如计算服务、存储服务和数据库服务的特点,特别是它们与本地开发的差异;在此基础上根据平台提出两个设计大规模Web应用程序的要点:计算资源的"无状态"处理和数据库的"横向"扩展,并给出了相应的实例进行说明。展开更多
文摘This research paper has provided the methodology and design for implementing the hybrid author recommender system using Azure Data Lake Analytics and Power BI. It offers a recommendation for the top 1000 Authors of computer science in different fields of study. The technique used in this paper is handling the inadequate Information for citation;it removes the problem of cold start, which is encountered by very many other recommender systems. In this paper, abstracts, the titles, and the Microsoft academic graphs have been used in coming up with the recommendation list for every document, which is used to combine the content-based approaches and the co-citations. Prioritization and the blending of every technique have been allowed by the tuning system parameters, allowing for the authority in results of recommendation versus the paper novelty. In the end, we do observe that there is a direct correlation between the similarity rankings that have been produced by the system and the scores of the participant. The results coming from the associated scrips of analysis and the user survey have been made available through the recommendation system. Managers must gain the required expertise to fully utilize the benefits that come with business intelligence systems [1]. Data mining has become an important tool for managers that provides insights about their daily operations and leverage the information provided by decision support systems to improve customer relationships [2]. Additionally, managers require business intelligence systems that can rank the output in the order of priority. Ranking algorithm can replace the traditional data mining algorithms that will be discussed in-depth in the literature review [3].