期刊文献+
共找到29,509篇文章
< 1 2 250 >
每页显示 20 50 100
Application of the back-error propagation artificial neural network(BPANN) on genetic variants in the PPAR-γ and RXR-α gene and risk of metabolic syndrome in a Chinese Han population 被引量:3
1
作者 Xu Zhao Kang Xu +11 位作者 Hui Shi Jinluo Cheng Jianhua Ma Yanqin Gao Qian Li Xinhua Ye Ying Lu Xiaofang Yu Juan Du Wencong Du Qing Ye Ling Zhou 《The Journal of Biomedical Research》 CAS 2014年第2期114-122,共9页
This study was aimed to explore the associations between the combined effects of several polymorphisms in the PPAR-γ and RXR-α gene and environmental factors with the risk of metabolic syndrome by back-error propaga... This study was aimed to explore the associations between the combined effects of several polymorphisms in the PPAR-γ and RXR-α gene and environmental factors with the risk of metabolic syndrome by back-error propaga- tion artificial neural network (BPANN). We established the model based on data gathered from metabolic syndrome patients (n = 1012) and normal controls (n = 1069) by BPANN. Mean impact value (MIV) for each input variable was calculated and the sequence of factors was sorted according to their absolute MIVs. Generalized multifactor dimensionality reduction (GMDR) confirmed a joint effect of PPAR-9" and RXR-a based on the results from BPANN. By BPANN analysis, the sequences according to the importance of metabolic syndrome risk fac- tors were in the order of body mass index (BMI), serum adiponectin, rs4240711, gender, rs4842194, family history of type 2 diabetes, rs2920502, physical activity, alcohol drinking, rs3856806, family history of hypertension, rs1045570, rs6537944, age, rs17817276, family history of hyperlipidemia, smoking, rs1801282 and rs3132291. However, no polymorphism was statistically significant in multiple logistic regression analysis. After controlling for environmental factors, A1, A2, B1 and B2 (rs4240711, rs4842194, rs2920502 and rs3856806) models were the best models (cross-validation consistency 10/10, P = 0.0107) with the GMDR method. In conclusion, the interaction of the PPAR-γ and RXR-α gene could play a role in susceptibility to metabolic syndrome. A more realistic model is obtained by using BPANN to screen out determinants of diseases of multiple etiologies like metabolic syndrome. 展开更多
关键词 back-error propagation artificial neural network bpANN) metabolic syndrome peroxisome prolif-erators activated receptor-γ (PPAR) gene retinoid X receptor-α (RXR-α) gene ADIPONECTIN
下载PDF
Back-propagation Network在巷道围岩稳定性识别中的应用
2
作者 潘建平 饶运章 徐水太 《南方冶金学院学报》 2004年第1期16-19,共4页
提出了以Back-PropagationNetwork(简称BP网络)进行围岩稳定性识别的模型,并根据收集到的煤矿围岩资料来训练和检验该模型.将评判结果与其它方法进行了比较,表明:BP网络经训练后具有较高的识别能力,可用于解决工程中的非线性问题.
关键词 围岩稳定性 bp网络 识别
下载PDF
FORCE RIPPLE SUPPRESSION TECHNOLOGY FOR LINEAR MOTORS BASED ON BACK PROPAGATION NEURAL NETWORK 被引量:7
3
作者 ZHANG Dailin CHEN Youping +2 位作者 AI Wu ZHOU Zude KONG Ching Tom 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第2期13-16,共4页
Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. I... Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. In order to suppress the force ripple, back propagation(BP) neural network is proposed to learn the function of the force ripple of linear motors, and the acquisition method of training samples is proposed based on a disturbance observer. An off-line BP neural network is used mainly because of its high running efficiency and the real-time requirement of the servo control system of a linear motor. By using the function, the force ripple is on-line compensated according to the position of the LM. The experimental results show that the force ripple is effectively suppressed by the compensation of the BP neural network. 展开更多
关键词 Linear motor (LM) back propagationbp algorithm Neural network Anti-disturbance technology
下载PDF
Determination of Gamma point source efficiency based on a backpropagation neural network 被引量:4
4
作者 Hong-Long Zheng Xian-Guo Tuo +4 位作者 Shu-Ming Peng Rui Shi Huai-Liang Li Jing Lu Jin-Fu Li 《Nuclear Science and Techniques》 SCIE CAS CSCD 2018年第5期1-9,共9页
Efficiency is an important factor in quantitative and qualitative analysis of radionuclides, and the gamma point source efficiency is related to the radial angle,detection distance, and gamma-ray energy. In this work,... Efficiency is an important factor in quantitative and qualitative analysis of radionuclides, and the gamma point source efficiency is related to the radial angle,detection distance, and gamma-ray energy. In this work, on the basis of a back-propagation(BP) neural network model,a method to determine the gamma point source efficiency is developed and validated. The efficiency of the point sources ^(137)Cs and ^(60)Co at discrete radial angles, detection distances, and gamma-ray energies is measured, and the BP neural network prediction model is constructed using MATLAB. The gamma point source efficiencies at different radial angles, detection distances, and gamma-ray energies are predicted quickly and accurately using this nonlinear prediction model. The results show that the maximum error between the predicted and experimental values is 3.732% at 661.661 keV, 11π/24, and 35 cm, and those under other conditions are less than 3%. The gamma point source efficiencies obtained using the BP neural network model are in good agreement with experimental data. 展开更多
关键词 EFFICIENCY bp NEURAL network HPGE DETECTOR GAMMA point source
下载PDF
A Short-Range Quantitative Precipitation Forecast Algorithm Using Back-Propagation Neural Network Approach 被引量:5
5
作者 冯业荣 David H.KITZMILLER 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第3期405-414,共10页
A back-propagation neural network (BPNN) was used to establish relationships between the shortrange (0-3-h) rainfall and the predictors ranging from extrapolative forecasts of radar reflectivity, satelliteestimate... A back-propagation neural network (BPNN) was used to establish relationships between the shortrange (0-3-h) rainfall and the predictors ranging from extrapolative forecasts of radar reflectivity, satelliteestimated cloud-top temperature, lightning strike rates, and Nested Grid Model (NGM) outputs. Quan- titative precipitation forecasts (QPF) and the probabilities of categorical precipitation were obtained. Results of the BPNN algorithm were compared to the results obtained from the multiple linear regression algorithm for an independent dataset from the 1999 warm season over the continental United States. A sample forecast was made over the southeastern United States. Results showed that the BPNN categorical rainfall forecasts agreed well with Stage Ⅲ observations in terms of the size and shape of the area of rainfall. The BPNN tended to over-forecast the spatial extent of heavier rainfall amounts, but the positioning of the areas with rainfall ≥25.4 mm was still generally accurate. It appeared that the BPNN and linear regression approaches produce forecasts of very similar quality, although in some respects BPNN slightly outperformed the regression. 展开更多
关键词 quantitative precipitation forecast bp neural network WSR-88D Doppler radar lightning strike rate infrared satellite data NGM model
下载PDF
Simulation of phytoplankton biomass in Quanzhou Bay using a back propagation network model and sensitivity analysis for environmental variables 被引量:3
6
作者 郑伟 石洪华 +2 位作者 宋希坤 黄东仁 胡龙 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2012年第5期843-851,共9页
Prediction and sensitivity models,to elucidate the response of phytoplankton biomass to environmental factors in Quanzhou Bay,Fujian,China,were developed using a back propagation(BP) network.The environmental indicato... Prediction and sensitivity models,to elucidate the response of phytoplankton biomass to environmental factors in Quanzhou Bay,Fujian,China,were developed using a back propagation(BP) network.The environmental indicators of coastal phytoplankton biomass were determined and monitoring data for the bay from 2008 was used to train,test and build a three-layer BP artificial neural network with multi-input and single-output.Ten water quality parameters were used to forecast phytoplankton biomass(measured as chlorophyll-a concentration).Correlation coefficient between biomass values predicted by the model and those observed was 0.964,whilst the average relative error of the network was-3.46% and average absolute error was 10.53%.The model thus has high level of accuracy and is suitable for analysis of the influence of aquatic environmental factors on phytoplankton biomass.A global sensitivity analysis was performed to determine the influence of different environmental indicators on phytoplankton biomass.Indicators were classified according to the sensitivity of response and its risk degree.The results indicate that the parameters most relevant to phytoplankton biomass are estuary-related and include pH,sea surface temperature,sea surface salinity,chemical oxygen demand and ammonium. 展开更多
关键词 SIMULATION phytoplankton biomass Quanzhou Bay back propagation bp network global sensitivity analysis
下载PDF
Surface Quality Evaluation of Fluff Fabric Based on Particle Swarm Optimization Back Propagation Neural Network 被引量:1
7
作者 MA Qiurui LIN Qiangqiang JIN Shoufeng 《Journal of Donghua University(English Edition)》 EI CAS 2019年第6期539-546,共8页
Aiming at the problem that back propagation(BP)neural network predicts the low accuracy rate of fluff fabric after fluffing process,a BP neural network model optimized by particle swarm optimization(PSO)algorithm is p... Aiming at the problem that back propagation(BP)neural network predicts the low accuracy rate of fluff fabric after fluffing process,a BP neural network model optimized by particle swarm optimization(PSO)algorithm is proposed.The sliced image is obtained by the principle of light-cutting imaging.The fluffy region of the adaptive image segmentation is extracted by the Freeman chain code principle.The upper edge coordinate information of the fabric is subjected to one-dimensional discrete wavelet decomposition to obtain high frequency information and low frequency information.After comparison and analysis,the BP neural network was trained by high frequency information,and the PSO algorithm was used to optimize the BP neural network.The optimized BP neural network has better weights and thresholds.The experimental results show that the accuracy of the optimized BP neural network after applying high-frequency information training is 97.96%,which is 3.79%higher than that of the unoptimized BP neural network,and has higher detection accuracy. 展开更多
关键词 WOOL FABRIC feature extraction WAVELET TRANSFORM particle SWARM optimization(PSO) back propagation(bp)neural network
下载PDF
Fashion Color Forecasting by Applying an Improved Back Propagation Neural Network 被引量:2
8
作者 常丽霞 潘如如 高卫东 《Journal of Donghua University(English Edition)》 EI CAS 2013年第1期58-62,共5页
Fashion color forecasting is one of the most important factors for fashion marketing and manufacturing. Several models have been applied by previous researchers to conduct fashion color forecasting. However, few convi... Fashion color forecasting is one of the most important factors for fashion marketing and manufacturing. Several models have been applied by previous researchers to conduct fashion color forecasting. However, few convincing forecasting systems have been established. A prediction model for fashion color forecasting was established by applying an improved back propagation neural network (BPNN) model in this paper. Successive six-year fashion color palettes, released by INTERCOLOR, were used as learning information for the neural network to develop a reliable prediction model. Colors in the palettes were quantified by PANTONE color system. Additionally, performance of the established model was compared with other GM(1, 1) models. Results show that the improved BPNN model is suitable to predict future fashion color trend. 展开更多
关键词 fashion color back propagation neural network(bpNN) trend forecasting momentum factor
下载PDF
Performance of Feedback BP Networks 被引量:1
9
作者 Luo Siwei Yang Wujie & Zhang Aijun(Dept. of Computer Science & Technology. Northern Jiaotong University, Beijing 100044, China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1995年第3期11-18,共8页
Through adding feedbacks in multi-layer BP networks, the network performance is improvedconsiderably compared with general BP network and Hopfield network, particularly the associative memorizing ability. In this pape... Through adding feedbacks in multi-layer BP networks, the network performance is improvedconsiderably compared with general BP network and Hopfield network, particularly the associative memorizing ability. In this paper, we analyze the two networks: feedback BP network and Hopfiled network andcompare the property between them. The conclusion shows that feedback BP network has more powerfulassociation memorizing ability than Hopfiled network. 展开更多
关键词 Neural network ALGORITHM bp network
下载PDF
Combinatorial Optimization Based Analog Circuit Fault Diagnosis with Back Propagation Neural Network 被引量:1
10
作者 李飞 何佩 +3 位作者 王向涛 郑亚飞 郭阳明 姬昕禹 《Journal of Donghua University(English Edition)》 EI CAS 2014年第6期774-778,共5页
Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of... Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of digital circuit. Simulations and applications have shown that the methods based on BP neural network are effective in analog circuit fault diagnosis. Aiming at the tolerance of analog circuit,a combinatorial optimization diagnosis scheme was proposed with back propagation( BP) neural network( BPNN).The main contributions of this scheme included two parts:( 1) the random tolerance samples were added into the nominal training samples to establish new training samples,which were used to train the BP neural network based diagnosis model;( 2) the initial weights of the BP neural network were optimized by genetic algorithm( GA) to avoid local minima,and the BP neural network was tuned with Levenberg-Marquardt algorithm( LMA) in the local solution space to look for the optimum solution or approximate optimal solutions. The experimental results show preliminarily that the scheme substantially improves the whole learning process approximation and generalization ability,and effectively promotes analog circuit fault diagnosis performance based on BPNN. 展开更多
关键词 analog circuit fault diagnosis back propagation(bp) neural network combinatorial optimization TOLERANCE genetic algorithm(G A) Levenberg-Marquardt algorithm(LMA)
下载PDF
Backpropagation neural network method in data processing of ultrasonic imaging logging-while-drilling 被引量:2
11
作者 Zhao Jian Lu Jun-Qiang +2 位作者 Wu Jin-Ping Men Bai-Yong Chen Hong-Zhi 《Applied Geophysics》 SCIE CSCD 2021年第2期159-170,272,共13页
The existing methods for extracting the arrival time and amplitude of ultrasonic echo cannot eff ectively avoid the local interference of ultrasonic signals while drilling,which leads to poor accuracy of the echo arri... The existing methods for extracting the arrival time and amplitude of ultrasonic echo cannot eff ectively avoid the local interference of ultrasonic signals while drilling,which leads to poor accuracy of the echo arrival time and amplitude extracted by an ultrasonic imaging logging-while-drilling tool.In this study,a demodulation algorithm is used to preprocess the ultrasonic simulation signals while drilling,and we design a backpropagation neural network model to fit the relationship between the waveform data and time and amplitude.An ultrasonic imaging logging model is established,and the finite element simulation software is used for forward modeling.The response under diff erent measurement conditions is simulated by changing the model parameters,which are used as the input layer of the neural network model;The ultrasonic echo signal is considered as a low-frequency signal modulated by a high-frequency carrier signal,and a low-pass fi lter is designed to remove the high-frequency signal and obtain the low-frequency envelope signal.Then the amplitude of the envelope signal and its corresponding time are extracted as an output layer of the neural network model.By comparing the application eff ects of the various training methods,we fi nd that the conjugate gradient descent method is the most suitable method for solving the neural network model.The performance of the neural network model is tested using 11 groups of simulation test data,which verify the eff ectiveness of the model and lay the foundation for further practical application. 展开更多
关键词 ultrasonic imaging logging-while-drilling finite element simulation DEMODULATION bp neural network
下载PDF
A Review on Back-Propagation Neural Networks in the Application of Remote Sensing Image Classification 被引量:2
12
作者 Alaeldin Suliman Yun Zhang 《Journal of Earth Science and Engineering》 2015年第1期52-65,共14页
ANNs (Artificial neural networks) are used extensively in remote sensing image processing. It has been proven that BPNNs (back-propagation neural networks) have high attainable classification accuracy. However, th... ANNs (Artificial neural networks) are used extensively in remote sensing image processing. It has been proven that BPNNs (back-propagation neural networks) have high attainable classification accuracy. However, there is a noticeable variation in the achieved accuracies due to different network designs and implementations. Hence, researchers usually need to conduct several experimental trials before they can finalize the network design. This is a time consuming process which significantly reduces the effectiveness of using BPNNs and the final design may still not be optimal. Therefore, there is a need to see whether there are some common guidelines for effective design and implementation of BPNNs. With this aim in mind, this paper attempts to find and summarize the common guidelines suggested by different authors through literature review and discussion of the findings. To provide readers with background and contextual information, some ANN fundamentals are also introduced. 展开更多
关键词 Artificial neural networks back propagation CLASSIFICATION remote sensing.
下载PDF
Pseudo Random Number Generator Based on Back Propagation Neural Network 被引量:3
13
作者 WANG Bang-ju WANG Yu-hua +1 位作者 NIU Li-ping ZHANG Huan-guo 《Semiconductor Photonics and Technology》 CAS 2007年第2期164-168,共5页
Random numbers play an increasingly important role in secure wire and wireless communication. Thus the design quality of random number generator(RNG) is significant in information security. A novel pseudo RNG is propo... Random numbers play an increasingly important role in secure wire and wireless communication. Thus the design quality of random number generator(RNG) is significant in information security. A novel pseudo RNG is proposed for improving the security of network communication. The back propagation neural network(BPNN) is nonlinear, which can be used to improve the traditional RNG. The novel pseudo RNG is based on BPNN techniques. The result of test suites standardized by the U.S shows that the RNG can satisfy the security of communication. 展开更多
关键词 pseudo random number generator(PRNN) random number generator(RNG) back propagation neural networkbpNN)
下载PDF
Projected change in precipitation forms in the Chinese Tianshan Mountains based on the Back Propagation Neural Network Model 被引量:1
14
作者 REN Rui LI Xue-mei +2 位作者 LI Zhen LI Lan-hai HUANG Yi-yu 《Journal of Mountain Science》 SCIE CSCD 2022年第3期689-703,共15页
In the context of global warming,precipitation forms are likely to transform from snowfall to rainfall with a more pronounced trend.The change in precipitation forms will inevitably affect the processes of regional ru... In the context of global warming,precipitation forms are likely to transform from snowfall to rainfall with a more pronounced trend.The change in precipitation forms will inevitably affect the processes of regional runoff generation and confluence as well as the annual distribution of runoff.Most researchers used precipitation data from the CMIP5 model directly to study future precipitation trends without distinguishing between snowfall and rainfall.CMIP5 models have been proven to have better performance in simulating temperature but poorer performance in simulating precipitation.To overcome the above limitations,this paper used a Back Propagation Neural Network(BNN)to predict the rainfall-to-precipitation ratio(RPR)in months experiencing freezing-thawing transitions(FTTs).We utilized the meteorological(air pressure,air temperature,evaporation,relative humidity,wind speed,sunshine hours,surface temperature),topographic(altitude,slope,aspect)and geographic(longitude,latitude)data from 28 meteorological stations in the Chinese Tianshan Mountains region(CTMR)from 1961 to 2018 to calculate the RPR and constructed an index system of impact factors.Based on the BNN,decision-making trial and evaluation laboratory method(BP-DEMATEL),the key factors driving the transformation of the RPR in the CTMR were identified.We found that temperature was the only key factor affecting the transformation of the RPR in the BP-DEMATEL model.Considering the relationship between temperature and the RPR,the future temperature under different representative concentration pathways(RCPs)(RCP2.6/RCP4.5/RCP8.5)provided by 21 CMIP5 models and the meteorological factors from meteorological stations were input into the BNN model to acquire the future RPR from 2011 to 2100.The results showed that under the three scenarios,the RPR in the number of months experiencing FTTs during 2011-2100 will be higher than that in the historical period(1981-2010)in the CTMR.Furthermore,in terms of spatial variation,the RPR values on the south slope will be larger than those on the north slope under the three emission scenarios.Moreover,the RPR values exhibited different variation characteristics under different emission scenarios.Under the low-emission scenario(RCP2.6),as time passed,the RPR values changed slightly at more stations.Under the mediumemission scenario(RCP4.5),the RPR increased in the whole CTMR and stabilized on the north slope by the end of this century.Under the high-emission scenario(RCP8.5),the RPR values increased significantly through the 21 st century in the whole CTMR.This study may help to provide a scientific management basis for agricultural production and hydrology. 展开更多
关键词 Global warming Tianshan Mountains region Precipitation forms CMIP5 models back propagation Neural network Model
下载PDF
Gear Fault Detection Analysis Method Based on Fractional Wavelet Transform and Back Propagation Neural Network 被引量:1
15
作者 Yanqiang Sun Hongfang Chen +1 位作者 Liang Tang Shuang Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第12期1011-1028,共18页
A gear fault detection analysis method based on Fractional Wavelet Transform(FRWT)and Back Propagation Neural Network(BPNN)is proposed.Taking the changing order as the variable,the optimal order of gear vibration sign... A gear fault detection analysis method based on Fractional Wavelet Transform(FRWT)and Back Propagation Neural Network(BPNN)is proposed.Taking the changing order as the variable,the optimal order of gear vibration signals is determined by discrete fractional Fourier transform.Under the optimal order,the fractional wavelet transform is applied to eliminate noise from gear vibration signals.In this way,useful components of vibration signals can be successfully separated from background noise.Then,a set of feature vectors obtained by calculating the characteristic parameters for the de-noised signals are used to characterize the gear vibration features.Finally,the feature vectors are divided into two groups,including training samples and testing samples,which are input into the BPNN for learning and classification.Experimental results showed that this gear fault detection analysis method could well maintain the useful signal components related to gear faults and effectively extract the weak fault feature.The accuracy rate reached 96.67%in the identification of the type of gear fault. 展开更多
关键词 Gear fault detection preparation factional wavelet transform back propagation neural network
下载PDF
A Method for Solving Computer-Aided Product Design Optimization Problem Based on Back Propagation Neural Network 被引量:1
16
作者 周祥 何小荣 陈丙珍 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第4期510-514,共5页
Because of the powerful mapping ability, back propagation neural network (BP-NN) has been employed in computer-aided product design (CAPD) to establish the property prediction model. The backward problem in CAPD is to... Because of the powerful mapping ability, back propagation neural network (BP-NN) has been employed in computer-aided product design (CAPD) to establish the property prediction model. The backward problem in CAPD is to search for the appropriate structure or composition of the product with desired property, which is an optimization problem. In this paper, a global optimization method of using the a BB algorithm to solve the backward problem is presented. In particular, a convex lower bounding function is constructed for the objective function formulated with BP-NN model, and the calculation of the key parameter a is implemented by recurring to the interval Hessian matrix of the objective function. Two case studies involving the design of dopamine β-hydroxylase (DβH) inhibitors and linear low density polyethylene (LLDPE) nano composites are investigated using the proposed method. 展开更多
关键词 computer-aided product design (CAPD) back propagation neural network (bp-NN) a BB algorithm convex lower bounding function interval Hessian matrix
下载PDF
Research on Narrowband Line Spectrum Noise Control Method Based on Nearest Neighbor Filter and BP Neural Network Feedback Mechanism 被引量:1
17
作者 Shuiping Zhang Xi Liang +2 位作者 Lin Shi Lei Yan Jun Tang 《Sound & Vibration》 EI 2023年第1期29-44,共16页
Thefilter-x least mean square(FxLMS)algorithm is widely used in active noise control(ANC)systems.However,because the algorithm is a feedback control algorithm based on the minimization of the error signal variance to ... Thefilter-x least mean square(FxLMS)algorithm is widely used in active noise control(ANC)systems.However,because the algorithm is a feedback control algorithm based on the minimization of the error signal variance to update thefilter coefficients,it has a certain delay,usually has a slow convergence speed,and the system response time is long and easily affected by the learning rate leading to the lack of system stability,which often fails to achieve the desired control effect in practice.In this paper,we propose an active control algorithm with near-est-neighbor trap structure and neural network feedback mechanism to reduce the coefficient update time of the FxLMS algorithm and use the neural network feedback mechanism to realize the parameter update,which is called NNR-BPFxLMS algorithm.In the paper,the schematic diagram of the feedback control is given,and the performance of the algorithm is analyzed.Under various noise conditions,it is shown by simulation and experiment that the NNR-BPFxLMS algorithm has the following three advantages:in terms of performance,it has higher noise reduction under the same number of sampling points,i.e.,it has faster convergence speed,and by computer simulation and sound pipe experiment,for simple ideal line spectrum noise,compared with the convergence speed of NNR-BPFxLMS is improved by more than 95%compared with FxLMS algorithm,and the convergence speed of real noise is also improved by more than 70%.In terms of stability,NNR-BPFxLMS is insensitive to step size changes.In terms of tracking performance,its algorithm responds quickly to sudden changes in the noise spectrum and can cope with the complex control requirements of sudden changes in the noise spectrum. 展开更多
关键词 FxLMS NNR-bpFxLMS line spectrum noise bp neural network feedback convergence speed
下载PDF
A Back Propagation-Type Neural Network Architecture for Solving the Complete n ×n Nonlinear Algebraic System of Equations 被引量:1
18
作者 Konstantinos Goulianas Athanasios Margaris +2 位作者 Ioannis Refanidis Konstantinos Diamantaras Theofilos Papadimitriou 《Advances in Pure Mathematics》 2016年第6期455-480,共26页
The objective of this research is the presentation of a neural network capable of solving complete nonlinear algebraic systems of n equations with n unknowns. The proposed neural solver uses the classical back propaga... The objective of this research is the presentation of a neural network capable of solving complete nonlinear algebraic systems of n equations with n unknowns. The proposed neural solver uses the classical back propagation algorithm with the identity function as the output function, and supports the feature of the adaptive learning rate for the neurons of the second hidden layer. The paper presents the fundamental theory associated with this approach as well as a set of experimental results that evaluate the performance and accuracy of the proposed method against other methods found in the literature. 展开更多
关键词 Nonlinear Algebraic Systems Neural networks back propagation Numerical Analysis Computational Methods
下载PDF
Using Back Propagation Neural Network Method to Forecast Daily Indices of Solar Activity F_(10.7) 被引量:1
19
作者 XIAO Chao CHENG Guosheng +4 位作者 ZHANG Hua RONG Zhaojin SHEN Chao ZHANG Bo HU Hui 《空间科学学报》 CAS CSCD 北大核心 2017年第1期1-7,共7页
The solar 10.7 cm radio flux,F_(10.7),a measure of the solar radio flux per unit frequency at a wavelength of 10.7 cm,is a key and serviceable index for monitoring solar activities.The accurate prediction of F_(10.7) ... The solar 10.7 cm radio flux,F_(10.7),a measure of the solar radio flux per unit frequency at a wavelength of 10.7 cm,is a key and serviceable index for monitoring solar activities.The accurate prediction of F_(10.7) is of significant importance for short-term or long-term space weather forecasting.In this study,we apply Back Propagation(BP)neural network technique to forecast the daily F_(10.7)based on the trial data set of F_(10.7) from 1980 to 2001.Results show that this technique is better than the other prediction techniques for short-term forecasting,such as Support Vector Regression method. 展开更多
关键词 行星际磁场 扇形结构 地磁效应 特征向量
下载PDF
DAMAGE DETECTION IN STRUCTURES USING MODIFIED BACK-PROPAGATION NEURAL NETWORKS 被引量:6
20
作者 Sima Yuzhou 《Acta Mechanica Solida Sinica》 SCIE EI 2002年第4期358-370,共13页
A nonparametric structural damage detection methodology based on neuralnetworks method is presented for health monitoring of structure-unknown systems. In this approachappropriate neural networks are trained by use of... A nonparametric structural damage detection methodology based on neuralnetworks method is presented for health monitoring of structure-unknown systems. In this approachappropriate neural networks are trained by use of the modal test data from a 'healthy' structure.The trained networks which are subsequently fed with vibration measurements from the same structurein different stages have the capability of recognizing the location and the content of structuraldamage and thereby can monitor the health of the structure. A modified back-propagation neuralnetwork is proposed to solve the two practical problems encountered by the traditionalback-propagation method, i.e., slow learning progress and convergence to a false local minimum.Various training algorithms, types of the input layer and numbers of the nodes in the input layerare considered. Numerical example results from a 5-degree-of-freedom spring-mass structure andanalyses on the experimental data of an actual 5-storey-steel-frame demonstrate thatneural-networks-based method is a robust procedure and a practical tool for the detection ofstructural damage, and that the modified back-propagation algorithm could improve the computationalefficiency as well as the accuracy of detection. 展开更多
关键词 neural network modified back-propagation damage detection modal testdata health monitoring
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部