期刊文献+
共找到29,566篇文章
< 1 2 250 >
每页显示 20 50 100
Application of the back-error propagation artificial neural network(BPANN) on genetic variants in the PPAR-γ and RXR-α gene and risk of metabolic syndrome in a Chinese Han population 被引量:3
1
作者 Xu Zhao Kang Xu +11 位作者 Hui Shi Jinluo Cheng Jianhua Ma Yanqin Gao Qian Li Xinhua Ye Ying Lu Xiaofang Yu Juan Du Wencong Du Qing Ye Ling Zhou 《The Journal of Biomedical Research》 CAS 2014年第2期114-122,共9页
This study was aimed to explore the associations between the combined effects of several polymorphisms in the PPAR-γ and RXR-α gene and environmental factors with the risk of metabolic syndrome by back-error propaga... This study was aimed to explore the associations between the combined effects of several polymorphisms in the PPAR-γ and RXR-α gene and environmental factors with the risk of metabolic syndrome by back-error propaga- tion artificial neural network (BPANN). We established the model based on data gathered from metabolic syndrome patients (n = 1012) and normal controls (n = 1069) by BPANN. Mean impact value (MIV) for each input variable was calculated and the sequence of factors was sorted according to their absolute MIVs. Generalized multifactor dimensionality reduction (GMDR) confirmed a joint effect of PPAR-9" and RXR-a based on the results from BPANN. By BPANN analysis, the sequences according to the importance of metabolic syndrome risk fac- tors were in the order of body mass index (BMI), serum adiponectin, rs4240711, gender, rs4842194, family history of type 2 diabetes, rs2920502, physical activity, alcohol drinking, rs3856806, family history of hypertension, rs1045570, rs6537944, age, rs17817276, family history of hyperlipidemia, smoking, rs1801282 and rs3132291. However, no polymorphism was statistically significant in multiple logistic regression analysis. After controlling for environmental factors, A1, A2, B1 and B2 (rs4240711, rs4842194, rs2920502 and rs3856806) models were the best models (cross-validation consistency 10/10, P = 0.0107) with the GMDR method. In conclusion, the interaction of the PPAR-γ and RXR-α gene could play a role in susceptibility to metabolic syndrome. A more realistic model is obtained by using BPANN to screen out determinants of diseases of multiple etiologies like metabolic syndrome. 展开更多
关键词 back-error propagation artificial neural network (bpANN) metabolic syndrome peroxisome prolif-erators activated receptor-γ (PPAR) gene retinoid X receptor-α (RXR-α) gene ADIPONECTIN
下载PDF
Simulation of phytoplankton biomass in Quanzhou Bay using a back propagation network model and sensitivity analysis for environmental variables 被引量:3
2
作者 郑伟 石洪华 +2 位作者 宋希坤 黄东仁 胡龙 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2012年第5期843-851,共9页
Prediction and sensitivity models,to elucidate the response of phytoplankton biomass to environmental factors in Quanzhou Bay,Fujian,China,were developed using a back propagation(BP) network.The environmental indicato... Prediction and sensitivity models,to elucidate the response of phytoplankton biomass to environmental factors in Quanzhou Bay,Fujian,China,were developed using a back propagation(BP) network.The environmental indicators of coastal phytoplankton biomass were determined and monitoring data for the bay from 2008 was used to train,test and build a three-layer BP artificial neural network with multi-input and single-output.Ten water quality parameters were used to forecast phytoplankton biomass(measured as chlorophyll-a concentration).Correlation coefficient between biomass values predicted by the model and those observed was 0.964,whilst the average relative error of the network was-3.46% and average absolute error was 10.53%.The model thus has high level of accuracy and is suitable for analysis of the influence of aquatic environmental factors on phytoplankton biomass.A global sensitivity analysis was performed to determine the influence of different environmental indicators on phytoplankton biomass.Indicators were classified according to the sensitivity of response and its risk degree.The results indicate that the parameters most relevant to phytoplankton biomass are estuary-related and include pH,sea surface temperature,sea surface salinity,chemical oxygen demand and ammonium. 展开更多
关键词 SIMULATION phytoplankton biomass Quanzhou Bay back propagation (bp network global sensitivity analysis
下载PDF
Back-propagation Network在巷道围岩稳定性识别中的应用
3
作者 潘建平 饶运章 徐水太 《南方冶金学院学报》 2004年第1期16-19,共4页
提出了以Back-PropagationNetwork(简称BP网络)进行围岩稳定性识别的模型,并根据收集到的煤矿围岩资料来训练和检验该模型.将评判结果与其它方法进行了比较,表明:BP网络经训练后具有较高的识别能力,可用于解决工程中的非线性问题.
关键词 围岩稳定性 bp网络 识别
下载PDF
FORCE RIPPLE SUPPRESSION TECHNOLOGY FOR LINEAR MOTORS BASED ON BACK PROPAGATION NEURAL NETWORK 被引量:7
4
作者 ZHANG Dailin CHEN Youping +2 位作者 AI Wu ZHOU Zude KONG Ching Tom 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第2期13-16,共4页
Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. I... Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. In order to suppress the force ripple, back propagation(BP) neural network is proposed to learn the function of the force ripple of linear motors, and the acquisition method of training samples is proposed based on a disturbance observer. An off-line BP neural network is used mainly because of its high running efficiency and the real-time requirement of the servo control system of a linear motor. By using the function, the force ripple is on-line compensated according to the position of the LM. The experimental results show that the force ripple is effectively suppressed by the compensation of the BP neural network. 展开更多
关键词 Linear motor (LM) Back propagation(bp algorithm Neural network Anti-disturbance technology
下载PDF
Detecting overlapping communities in networks via dominant label propagation 被引量:11
5
作者 孙鹤立 黄健斌 +2 位作者 田勇强 宋擒豹 刘怀亮 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第1期551-559,共9页
Community detection is an important methodology for understanding the intrinsic structure and function of a realworld network. In this paper, we propose an effective and efficient algorithm, called Dominant Label Prop... Community detection is an important methodology for understanding the intrinsic structure and function of a realworld network. In this paper, we propose an effective and efficient algorithm, called Dominant Label Propagation Algorithm(Abbreviated as DLPA), to detect communities in complex networks. The algorithm simulates a special voting process to detect overlapping and non-overlapping community structure in complex networks simultaneously. Our algorithm is very efficient, since its computational complexity is almost linear to the number of edges in the network. Experimental results on both real-world and synthetic networks show that our algorithm also possesses high accuracies on detecting community structure in networks. 展开更多
关键词 overlapping community detection dominant label propagation complex network
下载PDF
Two-Layer Coupled Network Model for Topic Derivation in Public Opinion Propagation 被引量:8
6
作者 Yuexia Zhang Yixuan Feng 《China Communications》 SCIE CSCD 2020年第3期176-187,共12页
In view of the fact that news can generate derivative topics when it spreads through micro-blogs,a two-layer coupled SEIR public opinion propagation model is proposed in this paper.The model divides the process of pub... In view of the fact that news can generate derivative topics when it spreads through micro-blogs,a two-layer coupled SEIR public opinion propagation model is proposed in this paper.The model divides the process of public opinion propagation into two layers:the original topic layer and the derived topic layer.Messages are transmitted separately by the SEIR model in the two topic layers,which are independent and interactive.The influence of the topic derivation rate on the propagation trend is established by solving for the equilibrium point and propagation threshold.Further,we establish the relationship between the original topic and the derived topic by simulation.This paper uses the Baidu index to demonstrate the correctness of the model.The relationship between the derived topic and the original topic is verified by adjusting the parameters by the control variable method.The results show that the proposed model is consistent with the propagation of actual public opinion. 展开更多
关键词 complex network PUBLIC OPINION propagation SEIR model
下载PDF
Social Network Information Propagation Model Based on Individual Behavior 被引量:9
7
作者 Lejun Zhang Hongjie Li +1 位作者 Chunhui Zhao Xiaoying Lei 《China Communications》 SCIE CSCD 2017年第7期78-92,共15页
In this paper, we discuss building an information dissemination model based on individual behavior. We analyze the individual behavior related to information dissemination and the factors that affect the sharing behav... In this paper, we discuss building an information dissemination model based on individual behavior. We analyze the individual behavior related to information dissemination and the factors that affect the sharing behavior of individuals, and we define and quantify these factors. We consider these factors as characteristic attributes and use a Bayesian classifier to classify individuals. Considering the forwarding delay characteristics of information dissemination, we present a random time generation method that simulates the delay of information dissemination. Given time and other constraints, a user might not look at all the information that his/her friends published. Therefore, this paper proposes an algorithm to predict information visibility, i.e., it estimates the probability that an individual will see the information. Based on the classification of individual behavior and combined with our random time generation and information visibility prediction method, we propose an information dissemination model based on individual behavior. The model can be used to predict the scale and speed of information propagation. We use data sets from Sina Weibo to validate and analyze the prediction methods of the individual behavior and information dissemination model based on individual behavior. A previously proposedinformation dissemination model provides the foundation for a subsequent study on the evolution of the network and social network analysis. Predicting the scale and speed of information dissemination can also be used for public opinion monitoring. 展开更多
关键词 social network information propagation individual behavior propagation delay
下载PDF
Distributed Resource Allocation in Ultra-Dense Networks via Belief Propagation 被引量:2
8
作者 CHEN Siyi XING Chengwen FEI Zesong 《China Communications》 SCIE CSCD 2015年第11期79-91,共13页
Ultra-dense networking is widely accepted as a promising enabling technology to realize high power and spectrum efficient communications in future 5G communication systems. Although joint resource allocation schemes p... Ultra-dense networking is widely accepted as a promising enabling technology to realize high power and spectrum efficient communications in future 5G communication systems. Although joint resource allocation schemes promise huge performance improvement at the cost of cooperation among base stations,the large numbers of user equipment and base station make jointly optimizing the available resource very challenging and even prohibitive. How to decompose the resource allocation problem is a critical issue. In this paper,we exploit factor graphs to design a distributed resource allocation algorithm for ultra dense networks,which consists of power allocation,subcarrier allocation and cell association. The proposed factor graph based distributed algorithm can decompose the joint optimization problem of resource allocation into a series of low complexity subproblems with much lower dimensionality,and the original optimization problem can be efficiently solved via solving these subproblems iteratively. In addition,based on the proposed algorithm the amounts of exchanging information overhead between the resulting subprob-lems are also reduced. The proposed distributed algorithm can be understood as solving largely dimensional optimization problem in a soft manner,which is much preferred in practical scenarios. Finally,the performance of the proposed low complexity distributed algorithm is evaluated by several numerical results. 展开更多
关键词 RESOURCE ALLOCATION distributed optimization BELIEF propagation(bp) ultradense network
下载PDF
Determination of Gamma point source efficiency based on a backpropagation neural network 被引量:4
9
作者 Hong-Long Zheng Xian-Guo Tuo +4 位作者 Shu-Ming Peng Rui Shi Huai-Liang Li Jing Lu Jin-Fu Li 《Nuclear Science and Techniques》 SCIE CAS CSCD 2018年第5期1-9,共9页
Efficiency is an important factor in quantitative and qualitative analysis of radionuclides, and the gamma point source efficiency is related to the radial angle,detection distance, and gamma-ray energy. In this work,... Efficiency is an important factor in quantitative and qualitative analysis of radionuclides, and the gamma point source efficiency is related to the radial angle,detection distance, and gamma-ray energy. In this work, on the basis of a back-propagation(BP) neural network model,a method to determine the gamma point source efficiency is developed and validated. The efficiency of the point sources ^(137)Cs and ^(60)Co at discrete radial angles, detection distances, and gamma-ray energies is measured, and the BP neural network prediction model is constructed using MATLAB. The gamma point source efficiencies at different radial angles, detection distances, and gamma-ray energies are predicted quickly and accurately using this nonlinear prediction model. The results show that the maximum error between the predicted and experimental values is 3.732% at 661.661 keV, 11π/24, and 35 cm, and those under other conditions are less than 3%. The gamma point source efficiencies obtained using the BP neural network model are in good agreement with experimental data. 展开更多
关键词 EFFICIENCY bp NEURAL network HPGE DETECTOR GAMMA point source
下载PDF
Detecting community structure using label propagation with consensus weight in complex network 被引量:3
10
作者 梁宗文 李建平 +1 位作者 杨帆 Athina Petropulu 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第9期594-601,共8页
Community detection is a fundamental work to analyse the structural and functional properties of complex networks. The label propagation algorithm (LPA) is a near linear time algorithm to find a good community struc... Community detection is a fundamental work to analyse the structural and functional properties of complex networks. The label propagation algorithm (LPA) is a near linear time algorithm to find a good community structure. Despite various subsequent advances, an important issue of this algorithm has not yet been properly addressed. Random update orders within the algorithm severely hamper the stability of the identified community structure. In this paper, we executed the basic label propagation algorithm on networks multiple times, to obtain a set of consensus partitions. Based on these consensus partitions, we created a consensus weighted graph. In this consensus weighted graph, the weight value of the edge was the proportion value that the number of node pairs allocated in the same cluster was divided by the total number of partitions. Then, we introduced consensus weight to indicate the direction of label propagation. In label update steps, by computing the mixing value of consensus weight and label frequency, a node adopted the label which has the maximum mixing value instead of the most frequent one. For extending to different networks, we introduced a proportion parameter to adjust the proportion of consensus weight and label frequency in computing mixing value. Finally, we proposed an approach named the label propagation algorithm with consensus weight (LPAcw), and the experimental results showed that the LPAcw could enhance considerably both the stability and the accuracy of community partitions. 展开更多
关键词 label propagation algorithm community detection consensus cluster complex network
下载PDF
A Spatial-Temporal Network Perspective for the Propagation Dynamics of Air Traffic Delays 被引量:13
11
作者 Qing Cai Sameer Alam Vu N.Duong 《Engineering》 SCIE EI 2021年第4期452-464,共13页
Intractable delays occur in air traffic due to the imbalance between ever-increasing air traffic demand and limited airspace capacity.As air traffic is associated with complex air transport systems,delays can be magni... Intractable delays occur in air traffic due to the imbalance between ever-increasing air traffic demand and limited airspace capacity.As air traffic is associated with complex air transport systems,delays can be magnified and propagated throughout these systems,resulting in the emergent behavior known as delay propagation.An understanding of delay propagation dynamics is pertinent to modern air traffic management.In this work,we present a complex network perspective of delay propagation dynamics.Specifically,we model air traffic scenarios using spatial–temporal networks with airports as the nodes.To establish the dynamic edges between the nodes,we develop a delay propagation method and apply it to a given set of air traffic schedules.Based on the constructed spatial-temporal networks,we suggest three metrics-magnitude,severity,and speed-to gauge delay propagation dynamics.To validate the effectiveness of the proposed method,we carry out case studies on domestic flights in the Southeastern Asia region(SAR)and the United States.Experiments demonstrate that the propagation magnitude in terms of the number of flights affected by delay propagation and the amount of propagated delays for the US traffic are respectively five and ten times those of the SAR.Experiments further reveal that the propagation speed for US traffic is eight times faster than that of the SAR.The delay propagation dynamics reveal that about six hub airports in the SAR have significant propagated delays,while the situation in the United States is considerably worse,with a corresponding number of around 16.This work provides a potent tool for tracing the evolution of air traffic delays. 展开更多
关键词 Air traffic Transport systems Delay propagation dynamics Spatial–temporal networks
下载PDF
A Short-Range Quantitative Precipitation Forecast Algorithm Using Back-Propagation Neural Network Approach 被引量:5
12
作者 冯业荣 David H.KITZMILLER 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第3期405-414,共10页
A back-propagation neural network (BPNN) was used to establish relationships between the shortrange (0-3-h) rainfall and the predictors ranging from extrapolative forecasts of radar reflectivity, satelliteestimate... A back-propagation neural network (BPNN) was used to establish relationships between the shortrange (0-3-h) rainfall and the predictors ranging from extrapolative forecasts of radar reflectivity, satelliteestimated cloud-top temperature, lightning strike rates, and Nested Grid Model (NGM) outputs. Quan- titative precipitation forecasts (QPF) and the probabilities of categorical precipitation were obtained. Results of the BPNN algorithm were compared to the results obtained from the multiple linear regression algorithm for an independent dataset from the 1999 warm season over the continental United States. A sample forecast was made over the southeastern United States. Results showed that the BPNN categorical rainfall forecasts agreed well with Stage Ⅲ observations in terms of the size and shape of the area of rainfall. The BPNN tended to over-forecast the spatial extent of heavier rainfall amounts, but the positioning of the areas with rainfall ≥25.4 mm was still generally accurate. It appeared that the BPNN and linear regression approaches produce forecasts of very similar quality, although in some respects BPNN slightly outperformed the regression. 展开更多
关键词 quantitative precipitation forecast bp neural network WSR-88D Doppler radar lightning strike rate infrared satellite data NGM model
下载PDF
Study on analytical noise propagation in convolutional neural network methods used in computed tomography imaging 被引量:7
13
作者 Xiao-Yue Guo Li Zhang Yu-Xiang Xing 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第6期114-127,共14页
Neural network methods have recently emerged as a hot topic in computed tomography(CT) imaging owing to their powerful fitting ability;however, their potential applications still need to be carefully studied because t... Neural network methods have recently emerged as a hot topic in computed tomography(CT) imaging owing to their powerful fitting ability;however, their potential applications still need to be carefully studied because their results are often difficult to interpret and are ambiguous in generalizability. Thus, quality assessments of the results obtained from a neural network are necessary to evaluate the neural network. Assessing the image quality of neural networks using traditional objective measurements is not appropriate because neural networks are nonstationary and nonlinear. In contrast, subjective assessments are trustworthy, although they are time-and energy-consuming for radiologists. Model observers that mimic subjective assessment require the mean and covariance of images, which are calculated from numerous image samples;however, this has not yet been applied to the evaluation of neural networks. In this study, we propose an analytical method for noise propagation from a single projection to efficiently evaluate convolutional neural networks(CNNs) in the CT imaging field. We propagate noise through nonlinear layers in a CNN using the Taylor expansion. Nesting of the linear and nonlinear layer noise propagation constitutes the covariance estimation of the CNN. A commonly used U-net structure is adopted for validation. The results reveal that the covariance estimation obtained from the proposed analytical method agrees well with that obtained from the image samples for different phantoms, noise levels, and activation functions, demonstrating that propagating noise from only a single projection is feasible for CNN methods in CT reconstruction. In addition, we use covariance estimation to provide three measurements for the qualitative and quantitative performance evaluation of U-net. The results indicate that the network cannot be applied to projections with high noise levels and possesses limitations in terms of efficiency for processing low-noise projections. U-net is more effective in improving the image quality of smooth regions compared with that of the edge. LeakyReLU outperforms Swish in terms of noise reduction. 展开更多
关键词 Noise propagation Convolutional neural network Image quality assessment
下载PDF
The Research on Social Networks Public Opinion Propagation Influence Models and Its Controllability 被引量:9
14
作者 Lejun Zhang Tong Wang +3 位作者 Zilong Jin Nan Su Chunhui Zhao Yongjun He 《China Communications》 SCIE CSCD 2018年第7期98-110,共13页
Public opinion propagation control is one of the hot topics in contemporary social network research. With the rapid dissemination of information over the Internet, the traditional isolation and vaccination strategies ... Public opinion propagation control is one of the hot topics in contemporary social network research. With the rapid dissemination of information over the Internet, the traditional isolation and vaccination strategies can no longer achieve satisfactory results. A positive guidance technology for public opinion diffusion is urgently needed. First, based on the analysis of influence network controllability and public opinion diffusion, a positive guidance technology is proposed and a new model that supports external control is established. Second, in combination with the influence network, a public opinion propagation influence network model is designed and a public opinion control point selection algorithm(POCDNSA) is proposed. Finally, An experiment verified that this algorithm can lead to users receiving the correct guidance quickly and accurately, reducing the impact of false public opinion information; the effect of CELF is no better than that of the POCDNSA algorithm. The main reason is that the former is completely based on the diffusion cascade information contained in the training data, but does not consider the specific situation of the network structure and the diffusion of public opinion information in the closed set. thus, the effectiveness and feasibility of the algorithm is proven. The findings of this article therefore provide useful insights for the implementation of public opinion control. 展开更多
关键词 social network public opinion propagation control influence network
下载PDF
Surface Quality Evaluation of Fluff Fabric Based on Particle Swarm Optimization Back Propagation Neural Network 被引量:1
15
作者 MA Qiurui LIN Qiangqiang JIN Shoufeng 《Journal of Donghua University(English Edition)》 EI CAS 2019年第6期539-546,共8页
Aiming at the problem that back propagation(BP)neural network predicts the low accuracy rate of fluff fabric after fluffing process,a BP neural network model optimized by particle swarm optimization(PSO)algorithm is p... Aiming at the problem that back propagation(BP)neural network predicts the low accuracy rate of fluff fabric after fluffing process,a BP neural network model optimized by particle swarm optimization(PSO)algorithm is proposed.The sliced image is obtained by the principle of light-cutting imaging.The fluffy region of the adaptive image segmentation is extracted by the Freeman chain code principle.The upper edge coordinate information of the fabric is subjected to one-dimensional discrete wavelet decomposition to obtain high frequency information and low frequency information.After comparison and analysis,the BP neural network was trained by high frequency information,and the PSO algorithm was used to optimize the BP neural network.The optimized BP neural network has better weights and thresholds.The experimental results show that the accuracy of the optimized BP neural network after applying high-frequency information training is 97.96%,which is 3.79%higher than that of the unoptimized BP neural network,and has higher detection accuracy. 展开更多
关键词 WOOL FABRIC feature extraction WAVELET TRANSFORM particle SWARM optimization(PSO) back propagation(bp)neural network
下载PDF
A Predictive 6G Network with Environment Sensing Enhancement:From Radio Wave Propagation Perspective 被引量:5
16
作者 Gaofeng Nie Jianhua Zhang +6 位作者 Yuxiang Zhang Li Yu Zhen Zhang Yutong Sun Lei Tian Qixing Wang Liang Xia 《China Communications》 SCIE CSCD 2022年第6期105-122,共18页
In order to support the future digital society,sixth generation(6G)network faces the challenge to work efficiently and flexibly in a wider range of scenarios.The traditional way of system design is to sequentially get... In order to support the future digital society,sixth generation(6G)network faces the challenge to work efficiently and flexibly in a wider range of scenarios.The traditional way of system design is to sequentially get the electromagnetic wave propagation model of typical scenarios firstly and then do the network design by simulation offline,which obviously leads to a 6G network lacking of adaptation to dynamic environments.Recently,with the aid of sensing enhancement,more environment information can be obtained.Based on this,from radio wave propagation perspective,we propose a predictive 6G network with environment sensing enhancement,the electromagnetic wave propagation characteristics prediction enabled network(EWave Net),to further release the potential of 6G.To this end,a prediction plane is created to sense,predict and utilize the physical environment information in EWave Net to realize the electromagnetic wave propagation characteristics prediction timely.A two-level closed feedback workflow is also designed to enhance the sensing and prediction ability for EWave Net.Several promising application cases of EWave Net are analyzed and the open issues to achieve this goal are addressed finally. 展开更多
关键词 6G network electromagnetic waves propagation characteristics prediction environment information sensing enhancement
下载PDF
Link prediction in complex networks via modularity-based belief propagation 被引量:1
17
作者 赖大荣 舒欣 Christine Nardini 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第3期604-614,共11页
Link prediction aims at detecting missing, spurious or evolving links in a network, based on the topological information and/or nodes' attributes of the network. Under the assumption that the likelihood of the existe... Link prediction aims at detecting missing, spurious or evolving links in a network, based on the topological information and/or nodes' attributes of the network. Under the assumption that the likelihood of the existence of a link between two nodes can be captured by nodes' similarity, several methods have been proposed to compute similarity directly or indirectly, with information on node degree. However, correctly predicting links is also crucial in revealing the link formation mechanisms and thus in providing more accurate modeling for networks. We here propose a novel method to predict links by incorporating stochastic-block-model link generating mechanisms with node degree. The proposed method first recov- ers the underlying block structure of a network by modularity-based belief propagation, and based on the recovered block structural information it models the link likelihood between two nodes to match the degree sequence of the network. Experiments on a set of real-world networks and synthetic networks generated by stochastic block model show that our proposed method is effective in detecting missing, spurious or evolving links of networks that can be well modeled by a stochastic block model. This approach efficiently complements the toolbox for complex network analysis, offering a novel tool to model links in stochastic block model networks that are fundamental in the modeling of real world complex networks. 展开更多
关键词 link prediction complex network belief propagation MODULARITY
下载PDF
Convergence Rate Analysis of Gaussian Belief Propagation for Markov Networks 被引量:2
18
作者 Zhaorong Zhang Minyue Fu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第3期668-673,共6页
Gaussian belief propagation algorithm(GaBP) is one of the most important distributed algorithms in signal processing and statistical learning involving Markov networks. It is well known that the algorithm correctly co... Gaussian belief propagation algorithm(GaBP) is one of the most important distributed algorithms in signal processing and statistical learning involving Markov networks. It is well known that the algorithm correctly computes marginal density functions from a high dimensional joint density function over a Markov network in a finite number of iterations when the underlying Gaussian graph is acyclic. It is also known more recently that the algorithm produces correct marginal means asymptotically for cyclic Gaussian graphs under the condition of walk summability(or generalised diagonal dominance). This paper extends this convergence result further by showing that the convergence is exponential under the generalised diagonal dominance condition,and provides a simple bound for the convergence rate. Our results are derived by combining the known walk summability approach for asymptotic convergence analysis with the control systems approach for stability analysis. 展开更多
关键词 BELIEF propagation DISTRIBUTED algorithm DISTRIBUTED estimation GAUSSIAN BELIEF propagation MARKOV networks
下载PDF
Fashion Color Forecasting by Applying an Improved Back Propagation Neural Network 被引量:2
19
作者 常丽霞 潘如如 高卫东 《Journal of Donghua University(English Edition)》 EI CAS 2013年第1期58-62,共5页
Fashion color forecasting is one of the most important factors for fashion marketing and manufacturing. Several models have been applied by previous researchers to conduct fashion color forecasting. However, few convi... Fashion color forecasting is one of the most important factors for fashion marketing and manufacturing. Several models have been applied by previous researchers to conduct fashion color forecasting. However, few convincing forecasting systems have been established. A prediction model for fashion color forecasting was established by applying an improved back propagation neural network (BPNN) model in this paper. Successive six-year fashion color palettes, released by INTERCOLOR, were used as learning information for the neural network to develop a reliable prediction model. Colors in the palettes were quantified by PANTONE color system. Additionally, performance of the established model was compared with other GM(1, 1) models. Results show that the improved BPNN model is suitable to predict future fashion color trend. 展开更多
关键词 fashion color back propagation neural network(bpNN) trend forecasting momentum factor
下载PDF
Finding Statistically Significant Communities in Networks with Weighted Label Propagation 被引量:2
20
作者 Wei Hu 《Social Networking》 2013年第3期138-146,共9页
Various networks exist in the world today including biological, social, information, and communication networks with the Internet as the largest network of all. One salient structural feature of these networks is the ... Various networks exist in the world today including biological, social, information, and communication networks with the Internet as the largest network of all. One salient structural feature of these networks is the formation of groups or communities of vertices that tend to be more connected to each other within the same group than to those outside. Therefore, the detection of these communities is a topic of great interest and importance in many applications and different algorithms including label propagation have been developed for such purpose. Speaker-listener label propagation algorithm (SLPA) enjoys almost linear time complexity, so desirable in dealing with large networks. As an extension of SLPA, this study presented a novel weighted label propagation algorithm (WLPA), which was tested on four real world social networks with known community structures including the famous Zachary's karate club network. Wilcoxon tests on the communities found in the karate club network by WLPA demonstrated an improved statistical significance over SLPA. Withthehelp of Wilcoxon tests again, we were able to determine the best possible formation of two communities in this network relative to the ground truth partition, which could be used as a new benchmark for assessing community detection algorithms. Finally WLPA predicted better communities than SLPA in two of the three additional real social networks, when compared to the ground truth. 展开更多
关键词 Community Detection Social networkS WEIGHTED LABEL propagation Statistical Significance Zachary’s KARATE CLUB network
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部