期刊文献+
共找到286篇文章
< 1 2 15 >
每页显示 20 50 100
Backlash Nonlinear Compensation of Servo Systems Using Backpropagation Neural Networks 被引量:2
1
作者 何超 徐立新 张宇河 《Journal of Beijing Institute of Technology》 EI CAS 1999年第3期300-305,共6页
Aim To eliminate the influences of backlash nonlinear characteristics generally existing in servo systems, a nonlinear compensation method using backpropagation neural networks(BPNN) is presented. Methods Based on s... Aim To eliminate the influences of backlash nonlinear characteristics generally existing in servo systems, a nonlinear compensation method using backpropagation neural networks(BPNN) is presented. Methods Based on some weapon tracking servo system, a three layer BPNN was used to off line identify the backlash characteristics, then a nonlinear compensator was designed according to the identification results. Results The simulation results show that the method can effectively get rid of the sustained oscillation(limit cycle) of the system caused by the backlash characteristics, and can improve the system accuracy. Conclusion The method is effective on sloving the problems produced by the backlash characteristics in servo systems, and it can be easily accomplished in engineering. 展开更多
关键词 servo system backlash nonlinear characteristics limit cycle backpropagation neural networks(bpnn) compensation methods
下载PDF
COMBINATION OF DISTRIBUTED KALMAN FILTER AND BP NEURAL NETWORK FOR ESG BIAS MODEL IDENTIFICATION 被引量:3
2
作者 张克志 田蔚风 钱峰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第3期226-231,共6页
By combining the distributed Kalman filter (DKF) with the back propagation neural network (BPNN),a novel method is proposed to identify the bias of electrostatic suspended gyroscope (ESG). Firstly,the data sets ... By combining the distributed Kalman filter (DKF) with the back propagation neural network (BPNN),a novel method is proposed to identify the bias of electrostatic suspended gyroscope (ESG). Firstly,the data sets of multi-measurements of the same ESG in different noise environments are "mapped" into a sensor network,and DKF with embedded consensus filters is then used to preprocess the data sets. After transforming the preprocessed results into the trained input and the desired output of neural network,BPNN with the learning rate and the momentum term is further utilized to identify the ESG bias. As demonstrated in the experiment,the proposed approach is effective for the model identification of the ESG bias. 展开更多
关键词 model identification distributed Kalman filter(DKF) back propagation neural network(bpnn electrostatic suspended gyroscope(ESG)
下载PDF
基于CSSA-BPNN模型的胶结充填体动态抗压强度预测 被引量:1
3
作者 王小林 梅佳伟 +3 位作者 郭进平 卢才武 王颂 李泽峰 《有色金属工程》 CAS 北大核心 2024年第2期92-101,共10页
充填采矿法二步骤回采时胶结充填体稳定性受爆破扰动而降低。为快速准确地获得充填体动态抗压强度,利用分离式霍普金森压杆(SHPB)进行了40组不同应变率的单轴冲击实验,以灰砂比、充填体密度、养护龄期和平均应变率作为输入参数,充填体... 充填采矿法二步骤回采时胶结充填体稳定性受爆破扰动而降低。为快速准确地获得充填体动态抗压强度,利用分离式霍普金森压杆(SHPB)进行了40组不同应变率的单轴冲击实验,以灰砂比、充填体密度、养护龄期和平均应变率作为输入参数,充填体动态抗压强度作为输出参数,建立了一种基于Logistic混沌麻雀搜索算法(CSSA)优化BP神经网络(BPNN)的预测模型,并与传统BPNN和麻雀搜索算法优化的BPNN进行了对比分析。结果表明:CSSA-BPNN模型的平均相对误差为4.11%,预测值与实测值之间拟合的相关系数均在0.96以上,模型预测精度高。CSSA-BPNN模型的均方根误差为0.395 0 MPa,平均绝对误差为0.359 2 MPa,决定系数为0.995 2,均优于另外两种预测模型。实现了对充填体动态抗压强度的准确预测,可大幅减小物理实验量,为矿山胶结充填体的强度设计提供了一种新方法。 展开更多
关键词 混沌麻雀搜索算法(CSSA) BP神经网络(bpnn) 胶结充填体 分离式霍普金森压杆(SHPB) 动态抗压强度
下载PDF
基于改进麻雀搜索算法优化BPNN的电阻点焊质量预测
4
作者 罗震 董建伟 胡建明 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2024年第5期445-451,共7页
电阻点焊技术由于具有高效、自动化程度高等焊接特点,被广泛应用于汽车、航空航天和公共交通等制造领域,由于焊点在封闭状态下进行,焊接过程存在诸多影响因素且无法直接检测,因此,准确预测电阻点焊质量是生产过程中必不可少的环节.本文... 电阻点焊技术由于具有高效、自动化程度高等焊接特点,被广泛应用于汽车、航空航天和公共交通等制造领域,由于焊点在封闭状态下进行,焊接过程存在诸多影响因素且无法直接检测,因此,准确预测电阻点焊质量是生产过程中必不可少的环节.本文以2219/5A06铝合金为研究对象,在3种不同的装配条件(包括间隙和间距)下进行电阻点焊工艺信号的分析,并进行人工智能建模.为了提高电阻点焊质量评价的性能和效率,本文采用Logistic-Tent(LT)复合映射改进麻雀搜索算法(SSA)对反向传播神经网络(LT-SSA-BPNN)模型进行优化,模型的输入和输出分别为多信号融合后的变量和熔核直径.实验结果表明,与传统的标准反向传播神经网络(BPNN)模型相比,经过LT-SSA-BP模型优化后,预测结果的平均绝对误差(MAE)、均方误差(MSE)和均方根误差(RMSE)分别降低了36.17%、17.55%和51.75%.同时,LT-SSA-BP神经网络在添加了不同间隙和间距条件作为训练集后,其预测稳定性明显提高,可以成功预测电阻点焊质量. 展开更多
关键词 电阻点焊 质量预测 麻雀搜索算法 反向传播神经网络模型
下载PDF
Improving Land Resource Evaluation Using Fuzzy Neural Network Ensembles 被引量:11
5
作者 XUE Yue-Ju HU Yue-Ming +3 位作者 LIU Shu-Guang YANG Jing-Feng CHEN Qi-Chang BAO Shi-Tai 《Pedosphere》 SCIE CAS CSCD 2007年第4期429-435,共7页
Land evaluation factors often contain continuous-, discrete- and nominal-valued attributes. In traditional land evaluation, these different attributes are usually graded into categorical indexes by land resource exper... Land evaluation factors often contain continuous-, discrete- and nominal-valued attributes. In traditional land evaluation, these different attributes are usually graded into categorical indexes by land resource experts, and the evaluation results rely heavily on experts' experiences. In order to overcome the shortcoming, we presented a fuzzy neural network ensemble method that did not require grading the evaluation factors into categorical indexes and could evaluate land resources by using the three kinds of attribute values directly. A fuzzy back propagation neural network (BPNN), a fuzzy radial basis function neural network (RBFNN), a fuzzy BPNN ensemble, and a fuzzy RBFNN ensemble were used to evaluate the land resources in Guangdong Province. The evaluation results by using the fuzzy BPNN ensemble and the fuzzy RBFNN ensemble were much better than those by using the single fuzzy BPNN and the single fuzzy RBFNN, and the error rate of the single fuzzy RBFNN or fuzzy RBFNN ensemble was lower than that of the single fuzzy BPNN or fuzzy BPNN ensemble, respectively. By using the fuzzy neural network ensembles, the validity of land resource evaluation was improved and reliance on land evaluators' experiences was considerably reduced. 展开更多
关键词 back propagation neural network (bpnn data types fuzzy neural network ensembles land resource evaluation radial basis function neural network (RBFNN)
下载PDF
Fashion Color Forecasting by Applying an Improved Back Propagation Neural Network 被引量:2
6
作者 常丽霞 潘如如 高卫东 《Journal of Donghua University(English Edition)》 EI CAS 2013年第1期58-62,共5页
Fashion color forecasting is one of the most important factors for fashion marketing and manufacturing. Several models have been applied by previous researchers to conduct fashion color forecasting. However, few convi... Fashion color forecasting is one of the most important factors for fashion marketing and manufacturing. Several models have been applied by previous researchers to conduct fashion color forecasting. However, few convincing forecasting systems have been established. A prediction model for fashion color forecasting was established by applying an improved back propagation neural network (BPNN) model in this paper. Successive six-year fashion color palettes, released by INTERCOLOR, were used as learning information for the neural network to develop a reliable prediction model. Colors in the palettes were quantified by PANTONE color system. Additionally, performance of the established model was compared with other GM(1, 1) models. Results show that the improved BPNN model is suitable to predict future fashion color trend. 展开更多
关键词 fashion color back propagation neural network(bpnn) trend forecasting momentum factor
下载PDF
Pseudo Random Number Generator Based on Back Propagation Neural Network 被引量:3
7
作者 WANG Bang-ju WANG Yu-hua +1 位作者 NIU Li-ping ZHANG Huan-guo 《Semiconductor Photonics and Technology》 CAS 2007年第2期164-168,共5页
Random numbers play an increasingly important role in secure wire and wireless communication. Thus the design quality of random number generator(RNG) is significant in information security. A novel pseudo RNG is propo... Random numbers play an increasingly important role in secure wire and wireless communication. Thus the design quality of random number generator(RNG) is significant in information security. A novel pseudo RNG is proposed for improving the security of network communication. The back propagation neural network(BPNN) is nonlinear, which can be used to improve the traditional RNG. The novel pseudo RNG is based on BPNN techniques. The result of test suites standardized by the U.S shows that the RNG can satisfy the security of communication. 展开更多
关键词 pseudo random number generator(PRNN) random number generator(RNG) back propagation neural network(bpnn
下载PDF
基于BPNN和MOOGA的高速联轴器多目标优化方法 被引量:2
8
作者 王艺琳 王维民 +2 位作者 李维博 王珈乐 张帅 《机电工程》 CAS 北大核心 2024年第2期236-244,共9页
针对高转速、复合工况下膜盘联轴器难以保证其强度特性问题,对已有膜盘联轴器强度及动力学特性进行了研究,提出了一种基于反向传播神经网络(BPNN)和多目标优化遗传算法(MOOGA)的高速联轴器多目标优化方法。首先,为了得到优化所需的关键... 针对高转速、复合工况下膜盘联轴器难以保证其强度特性问题,对已有膜盘联轴器强度及动力学特性进行了研究,提出了一种基于反向传播神经网络(BPNN)和多目标优化遗传算法(MOOGA)的高速联轴器多目标优化方法。首先,为了得到优化所需的关键参数,采用了正交实验结合多因素方差分析的方法,选取了联轴器优化参数;然后,基于已选取的关键参数,采用BPNN方法构建了截面应力和弯曲刚度的目标函数,并将其与多项式拟合方法进行了对比,对BPNN方法的精确性进行了验证;最后,采用MOOGA方法对目标函数进行了多目标优化,并将优化前后结果进行了对比分析。研究结果表明:采用BPNN结合MOOGA的方法对联轴器设计参数进行优化,在满足联轴器刚度需求的情况下,可有效降低联轴器膜盘的危险截面应力;优化后,联轴器危险应力减小了18.2%,弯曲刚度降低了5.05%,联轴器角向补偿能力增加了0.1°,从而证明了仿真的有效性。该结果可以为挠性联轴器参数优化设计提供参考。 展开更多
关键词 膜盘联轴器 机械强度 动力学特性 反向传播神经网络 多目标优化遗传算法 参数优化
下载PDF
基于MFO-BPNN的螺旋钻机钻速预测研究
9
作者 李嘉辉 王英 +3 位作者 郑荣跃 叶军 赵京昊 陈立 《机电工程》 CAS 北大核心 2024年第4期633-642,共10页
针对利用现有经验公式所建立的螺旋钻机钻速预测模型存在准确度不足的问题,提出了一种基于飞蛾扑火算法(MFO)的反向传播神经网络(BPNN)钻速预测模型。首先,对MFO算法的基本原理进行了研究,构建了MFO算法优化BPNN的具体流程;接着,采集了... 针对利用现有经验公式所建立的螺旋钻机钻速预测模型存在准确度不足的问题,提出了一种基于飞蛾扑火算法(MFO)的反向传播神经网络(BPNN)钻速预测模型。首先,对MFO算法的基本原理进行了研究,构建了MFO算法优化BPNN的具体流程;接着,采集了江苏无锡某施工现场钻探数据,并分析了钻速影响因素,运用小波阈值降噪、归一化和灰色关联度分析等系列方法对采集数据进行了预处理,得到了训练和测试集;然后,将MFO算法运用于神经网络的权值和阈值训练,以代替原有梯度下降法,建立了MFO-BPNN钻速预测模型;最后,对上述预测模型与BPNN模型、遗传算法优化反向传播神经网络(GA-BPNN)模型以及粒子群优化算法优化反向传播神经网络(PSO-BPNN)模型的预测结果和评价指标进行了详细的对比分析。研究结果表明:运用MFO-BPNN建立的钻速预测模型,其可靠性达到了91.65%,其决定系数(R 2)优于其他3种预测模型,3项误差指标也是其中最低的,说明该模型的预测精度良好,适合于桩基础工程的实际应用,可为复杂因素影响下的钻速预测提供一种新思路。 展开更多
关键词 螺旋钻机 钻速预测 飞蛾扑火算法 反向传播神经网络 遗传算法优化反向传播神经网络 粒子群优化算法优化反向传播神经网络 决定系数 桩基础工程
下载PDF
基于MCDM-BPNN的城市内涝风险评价及调蓄池选址
10
作者 郝景开 李红艳 +3 位作者 张峰 张翀 毛立波 刘大为 《中国安全科学学报》 CAS CSCD 北大核心 2024年第8期214-221,共8页
为建立一套较为完善的城市内涝风险评价体系,并据此确定调蓄池位置,首先,从积水风险、超载风险和边侧进流量3个维度构建评价指标,设计一种包括改进层次分析法(IAHP)、反熵权法(AEW)和优劣解距离法(TOPSIS)的混合多准则决策框架(MCDM);然... 为建立一套较为完善的城市内涝风险评价体系,并据此确定调蓄池位置,首先,从积水风险、超载风险和边侧进流量3个维度构建评价指标,设计一种包括改进层次分析法(IAHP)、反熵权法(AEW)和优劣解距离法(TOPSIS)的混合多准则决策框架(MCDM);然后,将IAHP-AEW-TOPSIS模型分别与IAHP-TOPSIS、AEW-TOPSIS模型对比,通过斯皮尔曼排序相关系数验证排序一致性,通过计算变异系数、相对极差和灵敏度证实IAHP-AEW-TOPSIS模型的性能;最后,结合反向传播神经网络(BPNN),建立MCDM-BPNN模型,并以山西省某一内涝易发区域为例进行验证。结果表明:积水风险对城市内涝风险评价体系的影响最为显著,所占权重为0.46,其次为超载风险,所占权重为0.36;节点位置与连接管道数量很大程度上对该节点的内涝风险产生影响,在管道汇接处或汇流面积较大处内涝出现更为频繁;IAHP-AEW-TOPSIS模型在样本判别方面具有更好的性能;在5年与10年重现期下,MCDM-BPNN模型验证集准确率分别为93.3%和100%,能够准确快速模拟和预测城市洪水;应用案例设置调蓄池后,高、中、低风险节点数量分别为7、9、30和6、19、21,内涝溢流削减效果显著。 展开更多
关键词 多准则决策框架(MCDM) 反向传播神经网络(bpnn) 城市内涝 风险评价 调蓄池
下载PDF
基于ADASYN数据平衡化的PSO-BPNN变压器套管故障诊断 被引量:1
11
作者 杨昊 胡文秀 +3 位作者 张璐 陈晋鹏 周思佳 赵思瑞 《电力工程技术》 北大核心 2024年第2期170-178,共9页
变压器套管作为设备重要的绝缘部件,其绝缘性能直接影响着设备的安全运行。为诊断变压器套管绝缘状态,改善变压器套管油中溶解气体的小样本不平衡数据对变压器套管故障诊断结果的影响,使用粒子群优化结合反向传播神经网络(particle swar... 变压器套管作为设备重要的绝缘部件,其绝缘性能直接影响着设备的安全运行。为诊断变压器套管绝缘状态,改善变压器套管油中溶解气体的小样本不平衡数据对变压器套管故障诊断结果的影响,使用粒子群优化结合反向传播神经网络(particle swarm optimization combined with back propagation neural network,PSO-BPNN)和自适应综合过采样(adaptive synthetic sampling,ADASYN)算法对变压器套管进行故障诊断。首先收集变压器套管的历史故障数据,建立具有明确故障类别的变压器套管油中溶解气体样本集,并通过ADASYN算法对原始数据中的少数类样本进行合成,得到平衡后的故障数据,然后将平衡后的油中溶解气体作为模型输入,故障状态作为标签输出,通过PSO-BPNN模型对变压器套管进行诊断,最后在原始样本集下使用反向传播神经网络(back propagation neural network,BPNN)、遗传结合反向传播神经网络(genetic combined with back propagation neural network,G-BPNN)算法、布谷鸟搜索结合反向传播神经网络(cuckoo search combined with back propagation neural network,CS-BPNN)算法以及PSO-BPNN模型对套管进行诊断。结果表明,针对变压器油纸套管绝缘状态进行故障诊断的多个模型中,基于ADASYN平衡数据后的PSO-BPNN模型和其他模型相比准确度最高,能有效减小小样本不平衡数据对诊断结果的影响,为判断变压器油纸套管绝缘性能提供了有效方法。 展开更多
关键词 变压器套管 故障诊断 油中溶解气体 反向传播神经网络(bpnn) 不平衡数据 自适应综合过采样(ADASYN)
下载PDF
基于SSA-BPNN的锂离子电池SOH估算
12
作者 张凯飞 张金龙 吕满平 《电源学报》 CSCD 北大核心 2024年第5期278-285,318,共9页
锂离子电池已被广泛应用于储能系统与电动汽车中,精确地估算锂离子电池健康状态SOH(state-of-health)是保证系统安全可靠运行的必要条件。从容量的角度分析SOH,在恒流-恒压CC-CV(constant current-constant voltage)充电电压和温度曲线... 锂离子电池已被广泛应用于储能系统与电动汽车中,精确地估算锂离子电池健康状态SOH(state-of-health)是保证系统安全可靠运行的必要条件。从容量的角度分析SOH,在恒流-恒压CC-CV(constant current-constant voltage)充电电压和温度曲线中提取了7个健康特征HI(health indicator)作为输入,基于数据驱动法提出了麻雀搜索算法-反向传播神经网络SSA-BPNN(sparrow search algorithm-back propagation neural network)的锂离子电池SOH估算方法,并应用数据增强进一步提高模型的鲁棒性,最终在NASA锂离子电池随机使用数据集上进行验证。通过与未采取数据增强的传统BP神经网络相比,获得SOH估算精度有明显提升,测试集SOH估算的最大绝对误差和均方根误差分别小于3%和1.32%,实验结果表明该方法兼顾误差小,收敛快,全局搜索能力且能够适应电池老化差异特性。 展开更多
关键词 锂离子电池 健康状态估算 数据驱动 SSA-bpnn 数据增强
下载PDF
Performance comparison of three artificial neural network methods for classification of electroencephalograph signals of five mental tasks
13
作者 Vijay Khare Jayashree Santhosh +1 位作者 Sneh Anand Manvir Bhatia 《Journal of Biomedical Science and Engineering》 2010年第2期200-205,共6页
In this paper, performance of three classifiers for classification of five mental tasks were investigated. Wavelet Packet Transform (WPT) was used for feature extraction of the relevant frequency bands from raw Electr... In this paper, performance of three classifiers for classification of five mental tasks were investigated. Wavelet Packet Transform (WPT) was used for feature extraction of the relevant frequency bands from raw Electroencephalograph (EEG) signal. The three classifiers namely used were Multilayer Back propagation Neural Network, Support Vector Machine and Radial Basis Function Neural Network. In MLP-BP NN five training methods used were a) Gradient Descent Back Propagation b) Levenberg-Marquardt c) Resilient Back Propagation d) Conjugate Learning Gradient Back Propagation and e) Gradient Descent Back Propagation with movementum. 展开更多
关键词 ELECTROENCEPHALOGRAM (EEG) Wavelet Packet Transform (WPT) Support Vector Machine (SVM) Radial Basis Function neural network (RBFNN) Multilayer Back Propagation neural network (MLP-bpnn) Brain Computer Interface (BCI)
下载PDF
基于SBAS-InSAR和BPNN的铀尾矿坝形变智能监测与预测
14
作者 周怡 彭国文 +3 位作者 黄召 阳鹏飞 刘丹丹 陈小丽 《中国安全科学学报》 CAS CSCD 北大核心 2024年第4期145-152,共8页
为提高铀尾矿库退役治理的监测工作效率,提出一个基于小基线合成孔径雷达干涉测量(SBAS-InSAR)技术和反向传播神经网络(BPNN)的铀尾矿库形变智能监测与预测模型。首先,利用SBAS-InSAR技术得到铀尾矿库2020年12月—2022年12月的累计形变... 为提高铀尾矿库退役治理的监测工作效率,提出一个基于小基线合成孔径雷达干涉测量(SBAS-InSAR)技术和反向传播神经网络(BPNN)的铀尾矿库形变智能监测与预测模型。首先,利用SBAS-InSAR技术得到铀尾矿库2020年12月—2022年12月的累计形变量与年均形变速率,并用第一拦水坝的7个全球导航卫星系统(GNSS)监测站验证InSAR监测值的精度;然后,选取铀尾矿库中的雷公塘坝、南坡横坝、战斗坝和松林坝4个坝段的累计沉降量并结合降雨量进行沉降分析;最后,随机提取铀尾矿坝100个沉降点的累积沉降数据,通过BPNN预测铀尾矿坝的形变。结果表明:2年间铀尾矿库的形变速率在-60.06~34.94 mm/a,铀尾矿坝整体处于下沉状态,累计沉降量最大为-46.67 mm。BPNN预测值与实际监测值的平均绝对误差为0.586 mm,均方误差为0.624 mm。 展开更多
关键词 小基线合成孔径雷达干涉测量(SBAS-InSAR) 反向传播神经网络(bpnn) 铀尾矿库 形变智能监测 Sentinel-1A
下载PDF
基于改进BPNN的5G通信网络流量预测
15
作者 李兵 《通信电源技术》 2024年第1期203-205,共3页
为提高5G网络流量预测结果的准确性,提出一种基于改进反向传播神经网络(Back Propagation Neural Network,BPNN)的5G通信网络流量预测方法,采用阿基米德优化算法(Arithmetic Optimization Algorithm,AOA)优化BPNN的权系数和阈值,建立基... 为提高5G网络流量预测结果的准确性,提出一种基于改进反向传播神经网络(Back Propagation Neural Network,BPNN)的5G通信网络流量预测方法,采用阿基米德优化算法(Arithmetic Optimization Algorithm,AOA)优化BPNN的权系数和阈值,建立基于AOA-BPNN的5G通信网络流量预测模型。采用某5G基站的网络通信流量监测数据进行仿真分析,并与其他方法的预测效果进行对比,结果表明,AOA-BPNN模型预测结果的平均相对误差和均方根误差分别为4.25%和0.522 GB,预测精度高于其他方法,验证了所提方法的实用性和优越性。 展开更多
关键词 5G通信 网络流量预测 反向传播神经网络(bpnn) 阿基米德优化算法(AOA)
下载PDF
变压器色谱监测中的 BPNN 故障诊断法 被引量:69
16
作者 王财胜 孙才新 廖瑞金 《中国电机工程学报》 EI CSCD 北大核心 1997年第5期322-325,共4页
本文将BP神经网络应用于变压器故障诊断。建立起学习样本集,提出了两种输入方式,并用它对神经网络进行训练。通过验证,结果显示该BPNN诊断法有良好的应用前景。
关键词 变压器 BP神经网络 色谱监测 故障诊断
下载PDF
改进PSO训练的BPNN方法的舰船主尺度建模 被引量:7
17
作者 张海鹏 韩端锋 郭春雨 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2012年第7期806-810,共5页
利用改进粒子群优化算法训练的BP神经网络(BPNN)对以航母为代表的大型舰船主尺度进行了回归分析.对粒子群优化算法(PSO)的学习因子进行了关于迭代进程的自适应调整,并将改进后的PSO算法对BPNN训练过程进行优化.利用新型BPNN对典型航母... 利用改进粒子群优化算法训练的BP神经网络(BPNN)对以航母为代表的大型舰船主尺度进行了回归分析.对粒子群优化算法(PSO)的学习因子进行了关于迭代进程的自适应调整,并将改进后的PSO算法对BPNN训练过程进行优化.利用新型BPNN对典型航母主尺度(总长、总宽、设计水线长、设计水线宽、吃水与满载排水量)进行数学建模,与基于传统多项式回归的结果进行对比分析.结果表明经改进PSO训练的BPNN具有更高的输出精度且具有良好的分段光滑特性,这对于大型舰船方案论证与总体设计可起到重要的指导性作用. 展开更多
关键词 舰船主尺度 回归分析 改进粒子群优化算法 BP神经网络
下载PDF
BPNN-HDMR非线性近似模型方法及应用 被引量:6
18
作者 李伟平 窦现东 +1 位作者 王振兴 柳超 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第5期32-38,共7页
提出基于误差反向传播神经网络(Back Propagation Neural Network,BPNN)的高维模型表示(high dimensional model representation,HDMR)方法,即BPNN-HDMR方法.BPNN-HDMR方法的显著优势是将BP神经网络的非线性函数逼近能力与高维模型的层... 提出基于误差反向传播神经网络(Back Propagation Neural Network,BPNN)的高维模型表示(high dimensional model representation,HDMR)方法,即BPNN-HDMR方法.BPNN-HDMR方法的显著优势是将BP神经网络的非线性函数逼近能力与高维模型的层级结构理论相结合来构建近似模型,并能够揭示输入变量之间固有的线性或非线性关系及其相关性,将构造模型复杂度由指数级增长降阶为多项式级,有效地解决了高维建模问题.通过测试和对比验证了该算法的效率和建模能力,并将该算法应用于矿用自卸车安全驾驶室翻车保护装置(Roll-Over Protective Structure,ROPS)的优化设计.通过优化结果验证了所提方法的可行性和有效性. 展开更多
关键词 近似模型 高维模型 误差反向传播神经网络 非线性 结构优化
下载PDF
基于AHP和BPNN的海事网格风险预警模型 被引量:6
19
作者 胡志武 吕鑫鑫 王胜正 《上海海事大学学报》 北大核心 2014年第4期20-25,共6页
为解决现阶段海事网格化管理的风险评价局限于网格划分过程、评价方法单一、可靠性低的问题,以系统工程和网格化管理的理论和方法为基础,基于层次分析法(Analytic Hierarchy Process,AHP)和反向传播神经网络(Back Propagation Neural Ne... 为解决现阶段海事网格化管理的风险评价局限于网格划分过程、评价方法单一、可靠性低的问题,以系统工程和网格化管理的理论和方法为基础,基于层次分析法(Analytic Hierarchy Process,AHP)和反向传播神经网络(Back Propagation Neural Network,BPNN),建立海事网格风险预警模型.首先,对海事网格风险影响因素进行分析,建立风险评价指标体系;然后,运用AHP界定各海事网格风险等级,再运用BPNN预测未来周期网格的风险等级;最后,综合上述两种方法的风险评估结果,确立海事网格风险预警等级.模型增加了海事网格风险预警的可靠性和准确性,可为海事部门提供风险控制的信息支撑,提升网格化管理的效果. 展开更多
关键词 网格化管理 风险预警模型 层次分析法(AHP) 反向传播神经网络(bpnn)
下载PDF
基于BPNN的手足口病重症化进程中的相关因素变化及预测分析 被引量:2
20
作者 马晓梅 闫国立 +5 位作者 刘颖 孙春阳 隋美丽 任静朝 郗园林 段广才 《西安交通大学学报(医学版)》 CAS CSCD 北大核心 2016年第5期721-725,共5页
目的探讨BP神经网络(BPNN)模型在儿童手足口病(HFMD)重症化进程预测中的应用价值,为HFMD重症病例早期识别提供参考依据。方法采用MATLAB 7.0软件对2013年4~6月河南郑州某医院收治的445例HFMD患儿临床资料构建BPNN模型,得出平均影... 目的探讨BP神经网络(BPNN)模型在儿童手足口病(HFMD)重症化进程预测中的应用价值,为HFMD重症病例早期识别提供参考依据。方法采用MATLAB 7.0软件对2013年4~6月河南郑州某医院收治的445例HFMD患儿临床资料构建BPNN模型,得出平均影响值(MIV)排序并归一化;从中挑选32例符合重症标准且自发病到重症的病例作为重症组,对照组纳入60例普通病例,以较大MIV值的因素为变量重新整理数据,统计分析得出单个因素水平和综合因素水平在重症化期间的变化趋势,阐述其与HFMD重症早期识别的关系。结果在HFMD重症化进程中,精神差、颈强直、易惊的变化是先上升,重症当天及前一天平稳且至最高,随后下降;呼吸频率、心率、嗜睡、热程≥3d及血糖水平的变化是先升后降,重症当天最高;手足抖动的变化是先升后降,重症前一天最高;呕吐呈下降趋势;热峰大致呈下降趋势,重症当天略微回升,之后降至正常体温;白细胞计数变化基本不大,均高于正常值范围,在重症次日恢复至正常值水平;综合因素水平是先上升至重症当天并达到最高,之后下降。结论 BPNN模型可用于分析HFMD重症化进程中的相关因素变化,可为重症病例的早期识别提供参考依据。 展开更多
关键词 bpnn HFMD 重症化 MIV
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部