The recently built China Digital Seismic Network consists of the China National Digital Seismic Network (CNDSN), 31 regional seismic networks and several small aperture arrays with more than 1 000 stations including...The recently built China Digital Seismic Network consists of the China National Digital Seismic Network (CNDSN), 31 regional seismic networks and several small aperture arrays with more than 1 000 stations including 850+ broadband stations. It forms a gigantic seismic array that provides an unprecedented opportunity to study the Earth's deep interior besides its routine task of seismic monitoring. Many modern seismic studies rely on rotation of vertical and horizontal components in order to separate different types of seismic waves. Knowledge of the orientations of the two horizontal components thus is important to perform a correction rotation. We analyzed particle motions of teleseismic P waves recorded by the network and used them to estimate the northcomponent azimuth of each station. An SNR-weighted-multi-event method was introduced to obtain component azimuths that best explain the P-wave particle motions of all the events recorded at a station. The method provides robust estimates including a measurement error calculated from background noise levels. We found that about one third of the stations have some sort of problems, including misorientation of the two horizontal components, mislabeling and polarity reversal in one or more components. These problems need to be taken into account for any rotation based seismic studies.展开更多
基金supported by NSF grant EAR-063566(F.N.)National Natural Science Foundation of China grant 40774042(J.L.)
文摘The recently built China Digital Seismic Network consists of the China National Digital Seismic Network (CNDSN), 31 regional seismic networks and several small aperture arrays with more than 1 000 stations including 850+ broadband stations. It forms a gigantic seismic array that provides an unprecedented opportunity to study the Earth's deep interior besides its routine task of seismic monitoring. Many modern seismic studies rely on rotation of vertical and horizontal components in order to separate different types of seismic waves. Knowledge of the orientations of the two horizontal components thus is important to perform a correction rotation. We analyzed particle motions of teleseismic P waves recorded by the network and used them to estimate the northcomponent azimuth of each station. An SNR-weighted-multi-event method was introduced to obtain component azimuths that best explain the P-wave particle motions of all the events recorded at a station. The method provides robust estimates including a measurement error calculated from background noise levels. We found that about one third of the stations have some sort of problems, including misorientation of the two horizontal components, mislabeling and polarity reversal in one or more components. These problems need to be taken into account for any rotation based seismic studies.