期刊文献+
共找到90篇文章
< 1 2 5 >
每页显示 20 50 100
DAMAGE DETECTION IN STRUCTURES USING MODIFIED BACK-PROPAGATION NEURAL NETWORKS 被引量:6
1
作者 Sima Yuzhou 《Acta Mechanica Solida Sinica》 SCIE EI 2002年第4期358-370,共13页
A nonparametric structural damage detection methodology based on neuralnetworks method is presented for health monitoring of structure-unknown systems. In this approachappropriate neural networks are trained by use of... A nonparametric structural damage detection methodology based on neuralnetworks method is presented for health monitoring of structure-unknown systems. In this approachappropriate neural networks are trained by use of the modal test data from a 'healthy' structure.The trained networks which are subsequently fed with vibration measurements from the same structurein different stages have the capability of recognizing the location and the content of structuraldamage and thereby can monitor the health of the structure. A modified back-propagation neuralnetwork is proposed to solve the two practical problems encountered by the traditionalback-propagation method, i.e., slow learning progress and convergence to a false local minimum.Various training algorithms, types of the input layer and numbers of the nodes in the input layerare considered. Numerical example results from a 5-degree-of-freedom spring-mass structure andanalyses on the experimental data of an actual 5-storey-steel-frame demonstrate thatneural-networks-based method is a robust procedure and a practical tool for the detection ofstructural damage, and that the modified back-propagation algorithm could improve the computationalefficiency as well as the accuracy of detection. 展开更多
关键词 neural network modified back-propagation damage detection modal testdata health monitoring
下载PDF
Optimization of processing parameters for microwave drying of selenium-rich slag using incremental improved back-propagation neural network and response surface methodology 被引量:4
2
作者 李英伟 彭金辉 +2 位作者 梁贵安 李玮 张世敏 《Journal of Central South University》 SCIE EI CAS 2011年第5期1441-1447,共7页
In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of ind... In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of independent variables (the microwave power, the acting time and the rotational frequency) for microwave drying of selenium-rich slag. The optimum operating conditions obtained from the quadratic form of the RSM are: the microwave power of 14.97 kW, the acting time of 89.58 min, the rotational frequency of 10.94 Hz, and the temperature of 136.407 ℃. The relative dehydration rate of 97.1895% is obtained. Under the optimum operating conditions, the incremental improved BP neural network prediction model can predict the drying process results and different effects on the results of the independent variables. The verification experiments demonstrate the prediction accuracy of the network, and the mean squared error is 0.16. The optimized results indicate that RSM can optimize the experimental conditions within much more broad range by considering the combination of factors and the neural network model can predict the results effectively and provide the theoretical guidance for the follow-up production process. 展开更多
关键词 microwave drying response surface methodology optimization incremental improved back-propagation neural network PREDICTION
下载PDF
A hybrid model for short-term rainstorm forecasting based on a back-propagation neural network and synoptic diagnosis 被引量:2
3
作者 Guolu Gao Yang Li +2 位作者 Jiaqi Li Xueyun Zhou Ziqin Zhou 《Atmospheric and Oceanic Science Letters》 CSCD 2021年第5期13-18,共6页
Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network... Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network(BPNN)with synoptic diagnosis for predicting rainstorms,and analyzes the hit rates of rainstorms for the above two methods using the county of Tianquan as a case study.Results showed that the traditional synoptic diagnosis method still has an important referential meaning for most rainstorm types through synoptic typing and statistics of physical quantities based on historical cases,and the threat score(TS)of rainstorms was more than 0.75.However,the accuracy for two rainstorm types influenced by low-level easterly inverted troughs was less than 40%.The BPNN method efficiently forecasted these two rainstorm types;the TS and equitable threat score(ETS)of rainstorms were 0.80 and 0.79,respectively.The TS and ETS of the hybrid model that combined the BPNN and synoptic diagnosis methods exceeded the forecast score of multi-numerical simulations over the Sichuan Basin without exception.This kind of hybrid model enhanced the forecasting accuracy of rainstorms.The findings of this study provide certain reference value for the future development of refined forecast models with local features. 展开更多
关键词 RAINSTORM Short-term prediction method back-propagation neural network Hybrid forecast model
下载PDF
Modeling water and carbon fluxes above summer maize field in North China Plain with back-propagation neural networks 被引量:1
4
作者 秦钟 苏高利 +2 位作者 于强 胡秉民 李俊 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第5期418-426,共9页
In this work, datasets of water and carbon fluxes measured with eddy covariance technique above a summer maize field in the North China Plain were simulated with artificial neural networks (ANNs) to explore the fluxes... In this work, datasets of water and carbon fluxes measured with eddy covariance technique above a summer maize field in the North China Plain were simulated with artificial neural networks (ANNs) to explore the fluxes responses to local environmental variables. The results showed that photosynthetically active radiation (PAR), vapor pressure deficit (VPD), air temperature (T) and leaf area index (LAI) were primary factors regulating both water vapor and carbon dioxide fluxes. Three-layer back-propagation neural networks (BP) could be applied to model fluxes exchange between cropland surface and atmosphere without using detailed physiological information or specific parameters of the plant. 展开更多
关键词 Carbon dioxide Water vapor and heat fluxes Three-layer back-propagation neural networks
下载PDF
Temperature prediction model for a high-speed motorized spindle based on back-propagation neural network optimized by adaptive particle swarm optimization 被引量:1
5
作者 Lei Chunli Zhao Mingqi +2 位作者 Liu Kai Song Ruizhe Zhang Huqiang 《Journal of Southeast University(English Edition)》 EI CAS 2022年第3期235-241,共7页
To predict the temperature of a motorized spindle more accurately,a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization(APSO-BPNN)is propos... To predict the temperature of a motorized spindle more accurately,a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization(APSO-BPNN)is proposed.First,on the basis of the PSO-BPNN algorithm,the adaptive inertia weight is introduced to make the weight change with the fitness of the particle,the adaptive learning factor is used to obtain different search abilities in the early and later stages of the algorithm,the mutation operator is incorporated to increase the diversity of the population and avoid premature convergence,and the APSO-BPNN model is constructed.Then,the temperature of different measurement points of the motorized spindle is forecasted by the BPNN,PSO-BPNN,and APSO-BPNN models.The experimental results demonstrate that the APSO-BPNN model has a significant advantage over the other two methods regarding prediction precision and robustness.The presented algorithm can provide a theoretical basis for intelligently controlling temperature and developing an early warning system for high-speed motorized spindles and machine tools. 展开更多
关键词 temperature prediction high-speed motorized spindle particle swarm optimization algorithm back-propagation neural network ROBUSTNESS
下载PDF
Predict typhoon-induced storm surge deviation in a principal component back-propagation neural network model 被引量:1
6
作者 过仲阳 戴晓燕 +1 位作者 栗小东 叶属峰 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2013年第1期219-226,共8页
To reduce typhoon-caused damages, numerical and empirical methods are often used to forecast typhoon storm surge. However, typhoon surge is a complex nonlinear process that is difficult to forecast accurately. We appl... To reduce typhoon-caused damages, numerical and empirical methods are often used to forecast typhoon storm surge. However, typhoon surge is a complex nonlinear process that is difficult to forecast accurately. We applied a principal component back-propagation neural network (PCBPNN) to predict the deviation in typhoon storm surge, in which data of the typhoon, upstream flood, and historical case studies were involved. With principal component analysis, 15 input factors were reduced to five principal components, and the application of the model was improved. Observation data from Huangpu Park in Shanghai, China were used to test the feasibility of the model. The results indicate that the model is capable of predicting a 12-hour warning before a typhoon surge. 展开更多
关键词 TYPHOON storm surges forecasts principal component back-propagation neural networks(PCbpnN) Changjiang (Yangtze) River estuary
下载PDF
Preparation of ZrB_2-SiC Powders via Carbothermal Reduction of Zircon and Prediction of Product Composition by Back-Propagation Artificial Neural Network 被引量:1
7
作者 LIU Jianghao DU Shuang +2 位作者 LI Faliang ZHANG Haijun ZHANG Shaoweia 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第5期1062-1069,共8页
Phase pure ZrB2-SiC composite powders were prepared after 1 450℃/3 h via carbothermal reduction route,by using ZrSiO4,B2O3 and carbon as the raw materials.The influences of firing temperature as well as the type and ... Phase pure ZrB2-SiC composite powders were prepared after 1 450℃/3 h via carbothermal reduction route,by using ZrSiO4,B2O3 and carbon as the raw materials.The influences of firing temperature as well as the type and amount of additive on the phase composition of final products were detailedly investigated.The results indicated that the onset formation temperature of ZrB2-SiC was reduced to 1 400℃by the present conditions,and oxide additive(including CoSO4·7H2O,Y2O3 and TiO2)was effective in enhancing the decomposition of raw ZrSiO4,therefore accelerating the synthesis of ZrB2-SiC.Moreover,microstructural observation showed that the as-prepared ZrB2 and SiC respectively had well-defined hexagonal columnar and fibrous morphology.Furthermore,the methodology of back-propagation artificial neural networks(BP-ANNs)was adopted to establish a model for predicting the reaction extent(e g,the content of ZrB2-SiC in final product)in terms of various processing conditions.The results predicted by the as-established BP-ANNs model matched well with that of testing experiment(with a mean square error in 10^(-3) degree),verifying good effectiveness of the proposed strategy. 展开更多
关键词 ZrB2-SiC powders carbothermal reduction back-propagation artificial neural networks (BP-ANNs) composition prediction
下载PDF
Sound Quality Prediction of Vehicle Interior Noise under Multiple Working Conditions Using Back-Propagation Neural Network Model 被引量:1
8
作者 Zutong Duan Yansong Wang Yanfeng Xing 《Journal of Transportation Technologies》 2015年第2期134-139,共6页
This paper presents a back-propagation neural network model for sound quality prediction (BPNN-SQP) of multiple working conditions’ vehicle interior noise. According to the standards and regulations, four kinds of ve... This paper presents a back-propagation neural network model for sound quality prediction (BPNN-SQP) of multiple working conditions’ vehicle interior noise. According to the standards and regulations, four kinds of vehicle interior noises under operating conditions, including idle, constant speed, accelerating and braking, are acquired. The objective psychoacoustic parameters and subjective annoyance results are respectively used as the input and output of the BPNN-SQP model. With correlation analysis and significance test, some psychoacoustic parameters, such as loudness, A-weighted sound pressure level, roughness, articulation index and sharpness, are selected for modeling. The annoyance values of unknown noise samples estimated by the BPNN-SQP model are highly correlated with the subjective annoyances. Conclusion can be drawn that the proposed BPNN-SQP model has good generalization ability and can be applied in sound quality prediction of vehicle interior noise under multiple working conditions. 展开更多
关键词 Multiple Working Conditions NEURAL network back-propagation SOUND Quality PREDICTION ANNOYANCE
下载PDF
A back-propagation neural-network-based displacement back analysis for the identification of the geomechanical parameters of the Yonglang landslide in China 被引量:1
9
作者 YU Fang-wei PENG Xiong-zhi SU Li-jun 《Journal of Mountain Science》 SCIE CSCD 2017年第9期1739-1750,共12页
Xigeda formation is a type of hundredmeter-thick lacustrine sediments of being prone to triggering landslides along the trunk channel and tributaries of the upper Yangtze River in China. The Yonglang landslide located... Xigeda formation is a type of hundredmeter-thick lacustrine sediments of being prone to triggering landslides along the trunk channel and tributaries of the upper Yangtze River in China. The Yonglang landslide located near Yonglang Town of Dechang County in Sichuan Province of China, which was a typical Xigeda formation landslide, was stabilized by anti-slide piles. Loading tests on a loading-test pile were conducted to measure the displacements and moments. The uncertainty of the tested geomechanical parameters of the Yonglang landslide over certain ranges would be problematic during the evaluation of the landslide. Thus, uniform design was introduced in the experimental design,and by which, numerical analyses of the loading-test pile were performed using Fast Lagrangian Analysis of Continua(FLAC3D) to acquire a database of the geomechanical parameters of the Yonglang landslide and the corresponding displacements of the loadingtest pile. A three-layer back-propagation neural network was established and trained with the database, and then tested and verified for its accuracy and reliability in numerical simulations. Displacement back analysis was conducted by substituting the displacements of the loading-test pile to the well-trained three-layer back-propagation neural network so as to identify the geomechanical parameters of the Yonglang landslide. The neuralnetwork-based displacement back analysis method with the proposed methodology is verified to be accurate and reliable for the identification of the uncertain geomechanical parameters of landslides. 展开更多
关键词 back-propagation neural network Displacement back analysis Geomechanical parameters Landslide Numerical analysis Uniform design Xigeda formation
下载PDF
Simulation and optimization for synthetic technology of 2-chloro-4,6-dinitroresorcinol based on back-propagation neural network
10
作者 史瑞欣 Huang Yudong 《High Technology Letters》 EI CAS 2007年第3期283-286,共4页
Back-propagation neural network was applied to predict and optimize the synthetic technology of 2-chloro-4,6-dinitroresorcinol. A model was established based on back-propagation neural network using the experimental d... Back-propagation neural network was applied to predict and optimize the synthetic technology of 2-chloro-4,6-dinitroresorcinol. A model was established based on back-propagation neural network using the experimental data of homogeneous design as the training sample set and the technological parameters were optimized by it. The optimal technological parameters are as follows: the reaction time is 4h, the reaction temperature is 80℃, the molar ratio of NaOH to 4,6-dinitro-1,2,3-trichlorobenzene is 5.5:1, the molar ratio of methanol to 4,6-dinitro-1,2,3- trichlorobenzene is 11:1, and the molar ratio of water to 4,6-dinitro-1,2,3-trichlorobenzene is 70:1. Under the optimal conditions, three groups of experiments were performed and the average yield of 2-chloro-4,6-dinitroresorcinol is 96.64%, the absolute error of it with the predicted value is -1.07%. 展开更多
关键词 2-chlom-4 6-dinitroresorcinol synthetic technology OPTIMIZATION back-propagation neural network model constructing
下载PDF
PLS-BPN法用于7005铝合金力学性能与工艺参数的定量研究 被引量:6
11
作者 方善锋 汪明朴 +2 位作者 王正安 齐卫宏 李周 《中国有色金属学报》 EI CAS CSCD 北大核心 2007年第12期1948-1954,共7页
用偏最小二乘法(PLS)结合反向传播人工神经网络(BPN)方法对7005铝合金力学性能与工艺参数之间的关系进行定性分析和计算。结果表明:用PLS法对实验数据作模式识别优化处理的结果与实验很吻合,能够指明该合金工艺参数优化的方向;用BPN定... 用偏最小二乘法(PLS)结合反向传播人工神经网络(BPN)方法对7005铝合金力学性能与工艺参数之间的关系进行定性分析和计算。结果表明:用PLS法对实验数据作模式识别优化处理的结果与实验很吻合,能够指明该合金工艺参数优化的方向;用BPN定量计算的结果与实验测定值符合也较好;将PLS与BPN法有机地联系起来,有利于克服过拟合,提高BPN预报的准确性。用留一(LOO)交叉验证法分别对3种模型PLS、BPN和PLS-BPN的合金性能预报结果进行验证,其中PLS-BPN模型预测的均方根误差(RMSE)和平均相对误差(MRE)均最低,更适合于7005铝合金性能预报。 展开更多
关键词 7005铝合金 偏最小二乘法(PLS) 神经网络(bpn) PLS—bpn 留-(LOO)交叉
下载PDF
基于BPN的舰载指控系统信息融合研究 被引量:1
12
作者 李守奇 刘文正 《舰船电子工程》 2009年第11期7-10,共4页
在研究舰载指控系统数据融合方法的基础上,根据神经网络的特点,建立了基于误差反向传播神经网络(BPN)的舰载指控系统信息融合模型。神经网络具有并行处理、容错性等特点,适合于多传感器的信息融合,将神经网络应用于舰载指控系统,能为指... 在研究舰载指控系统数据融合方法的基础上,根据神经网络的特点,建立了基于误差反向传播神经网络(BPN)的舰载指控系统信息融合模型。神经网络具有并行处理、容错性等特点,适合于多传感器的信息融合,将神经网络应用于舰载指控系统,能为指挥员提供更为精准、详细的战场综合态势,并有一定的预测功能,能更好地辅助指挥员进行指挥决策。 展开更多
关键词 神经网络 bpn 信息融合
下载PDF
CmⅠ偶宇称原子光谱的PLS-BPN方法研究
13
作者 曹晓卫 刘洪霖 陈念贻 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 1996年第6期511-515,共5页
应用模式识别和人工神经网络相结合的PLS-BPN方法,重新研究了Cm1偶宇称原子光谱组态归属问题,解决了前人用KNN等早期模式识别方法以及CPN神经网络方法进行时的遗留问题.还就一个文献报导为已知的能级,对其组态归属提出了质疑.
关键词 模式识别 CmⅠ偶宇称 原子光谱 PLS-bpn
下载PDF
Improved BP Neural Network for Transformer Fault Diagnosis 被引量:42
14
作者 SUN Yan-jing ZHANG Shen MIAO Chang-xin LI Jing-meng 《Journal of China University of Mining and Technology》 EI 2007年第1期138-142,共5页
The back propagation (BP)-based artificial neural nets (ANN) can identify complicated relationships among dissolved gas contents in transformer oil and corresponding fault types, using the highly nonlinear mapping nat... The back propagation (BP)-based artificial neural nets (ANN) can identify complicated relationships among dissolved gas contents in transformer oil and corresponding fault types, using the highly nonlinear mapping nature of the neural nets. An efficient BP-ALM (BP with Adaptive Learning Rate and Momentum coefficient) algorithm is proposed to reduce the training time and avoid being trapped into local minima, where the learning rate and the momentum coefficient are altered at iterations. We developed a system of transformer fault diagnosis based on Dissolved Gases Analysis (DGA) with a BP-ALM algorithm. Training patterns were selected from the results of a Refined Three-Ratio method (RTR). Test results show that the system has a better ability of quick learning and global convergence than other methods and a superior performance in fault diagnosis compared to convectional BP-based neural networks and RTR. 展开更多
关键词 transformer fault diagnosis back-propagation artificial neural network momentum coefficient
下载PDF
Discrimination of neutrons and gamma rays in plastic scintillator based on pulse-coupled neural network 被引量:8
15
作者 Hao-Ran Liu Yu-Xin Cheng +2 位作者 Zhuo Zuo Tian-Tian Sun Kai-Min Wang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第8期48-56,共9页
Neutron and gamma ray pulse signal discrimination technology is an essential part of many modern scientific fields,such as biology,geology,radiation imaging,and nuclear medicine.Neutrons are always accompanied by gamm... Neutron and gamma ray pulse signal discrimination technology is an essential part of many modern scientific fields,such as biology,geology,radiation imaging,and nuclear medicine.Neutrons are always accompanied by gamma rays due to their unique penetration characteristic;thus,the development of n-γdiscrimination methods is especially crucial.In the present study,a novel n-γdiscrimination method is proposed that implements a pulse-coupled neural network for n-γdiscrimination.In addition,experiments were conducted on the pulse signals detected by an EJ299-33 plastic scintillator,which is especially suitable for n-γdiscrimination.The proposed method was compared to three other discrimination methods,including the back-propagation neural network(BPNN),the fractal spectrum method,and the charge comparison method,with respect to two aspects:(i)the figure of merit(FoM)and(ii)discrimination time.The experimental results showed that the pulse-coupled neural network(PCNN)has a 26.49%improvement in FoM-value compared to the charge comparison method,a72.80%improvement compared to the BPNN,a 66.24%improvement compared to the fractal spectrum method,and the second-fastest discrimination time of 2.22 s.In conclusion,the PCNN treats the input signal as a whole for analysis and processing,imparting it with an excellent antinoise effect and the ability to process the dynamic information contained in a pulse signal. 展开更多
关键词 Pulse-coupled neural network Charge comparison back-propagation neural network Fractal spectrum n-γdiscrimination
下载PDF
Artificial neural network modeling of water quality of the Yangtze River system:a case study in reaches crossing the city of Chongqing 被引量:11
16
作者 郭劲松 李哲 《Journal of Chongqing University》 CAS 2009年第1期1-9,共9页
An effective approach for describing complicated water quality processes is very important for river water quality management. We built two artificial neural network(ANN) models,a feed-forward back-propagation(BP) mod... An effective approach for describing complicated water quality processes is very important for river water quality management. We built two artificial neural network(ANN) models,a feed-forward back-propagation(BP) model and a radial basis function(RBF) model,to simulate the water quality of the Yangtze and Jialing Rivers in reaches crossing the city of Chongqing,P. R. China. Our models used the historical monitoring data of biological oxygen demand,dissolved oxygen,ammonia,oil and volatile phenolic compounds. Comparison with the one-dimensional traditional water quality model suggest that both BP and RBF models are superior; their higher accuracy and better goodness-of-fit indicate that the ANN calculation of water quality agrees better with measurement. It is demonstrated that ANN modeling can be a tool for estimating the water quality of the Yangtze River. Of the two ANN models,the RBF model calculates with a smaller mean error,but a larger root mean square error. More effort to identify out the causes of these differences would help optimize the structures of neural network water-quality models. 展开更多
关键词 water quality modeling Yangtze River artificial neural network back-propagation model radial basis functionmodel
下载PDF
Retrieval of Water Vapor Profiles with Radio Occultation Measurements Using an Artificial Neural Network 被引量:4
17
作者 王鑫 吕达仁 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第5期759-764,共6页
A new method applying an artificial neural network (ANN) to retrieve water vapor profiles in the troposphere is presented. In this paper, a fully-connected, three-layer network based on the backpropagation algorithm... A new method applying an artificial neural network (ANN) to retrieve water vapor profiles in the troposphere is presented. In this paper, a fully-connected, three-layer network based on the backpropagation algorithm is constructed. Month, latitude, altitude and bending angle are chosen as the input vectors and water vapor pressure as the output vector. There are 130 groups of occultation measurements from June to November 2002 in the dataset. Seventy pairs of bending angles and water vapor pressure profiles are used to train the ANN, and the sixty remaining pairs of profiles are applied to the validation of the retrieval. By comparing the retrieved profiles with the corresponding ones from the Information System and Data Center of the Challenging Mini-Satellite Payload for Geoscientific Research and Application (CHAMP-ISDC), it can be concluded that the ANN is relatively convenient and accurate. Its results can be provided as the first guess for the iterative methods or the non-linear optimal estimation inverse method. 展开更多
关键词 radio occultation water vapor artificial neural network back-propagation
下载PDF
Predicting formation lithology from log data by using a neural network 被引量:6
18
作者 Wang Kexiong Zhang Laibin 《Petroleum Science》 SCIE CAS CSCD 2008年第3期242-246,共5页
In order to increase drilling speed in deep complicated formations in Kela-2 gas field, Tarim Basin, Xinjiang, west China, it is important to predict the formation lithology for drilling bit optimization. Based on the... In order to increase drilling speed in deep complicated formations in Kela-2 gas field, Tarim Basin, Xinjiang, west China, it is important to predict the formation lithology for drilling bit optimization. Based on the conventional back propagation (BP) model, an improved BP model was proposed, with main modifications of back propagation of error, self-adapting algorithm, and activation function, also a prediction program was developed. The improved BP model was successfully applied to predicting the lithology of formations to be drilled in the Kela-2 gas field. 展开更多
关键词 Kela-2 gas field neural network improved back-propagation (BP) model log data lithology prediction
下载PDF
Experiment Verification of Damage Detection for Offshore Platforms by Neural Networks 被引量:3
19
作者 刁延松 李华军 +1 位作者 石湘 王树青 《China Ocean Engineering》 SCIE EI 2006年第3期351-360,共10页
In the present work, damage detection for offshore platforms is divided into three steps. Firstly, the located direction of the damaged member is detemfined by the pmbabilistic neural network with input of the change ... In the present work, damage detection for offshore platforms is divided into three steps. Firstly, the located direction of the damaged member is detemfined by the pmbabilistic neural network with input of the change rate of normalized medal frequency. Secondly, the profile and layer of the damaged member is also determined by the pmbabilistic neural network with input of the normalized damage-signal index. Finally, the damage extent is determined by the back propagation neural networks with input of the squared change rate of modal frequency. So the size of the network and the training time can be reduced greatly. All these networks are trained with simulated data obtained from the finite element model of an experiment model. Then these trained neural networks are examined with data obtained from impulse tests on the experiment model. The experiment results show that the trained neural networks are able to detect the damaged member with reasonable accuracy. 展开更多
关键词 damage detection offshore platform probabilistic neural networks back-propagation neural networks
下载PDF
Application of Near Infrared Diffuse Reflectance Spectroscopy with Radial Basis Function Neural Network to Determination of Rifampincin Isoniazid and Pyrazinamide Tablets 被引量:3
20
作者 DU Lin-na WU Li-hang +5 位作者 LU Jia-hui GUO Wei-liang MENG Qing-fan JIANG Chao-jun SHEN Si-le TENG Li-rong 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2007年第5期518-523,共6页
Partial least squares(PLS),back-propagation neural network(BPNN)and radial basis function neural network(RBFNN)were respectively used for estalishing quantative analysis models with near infrared(NIR)diffuse r... Partial least squares(PLS),back-propagation neural network(BPNN)and radial basis function neural network(RBFNN)were respectively used for estalishing quantative analysis models with near infrared(NIR)diffuse reflectance spectra for determining the contents of rifampincin(RMP),isoniazid(INH)and pyrazinamide(PZA)in rifampicin isoniazid and pyrazinamide tablets.Savitzky-Golay smoothing,first derivative,second derivative,fast Fourier transform(FFT)and standard normal variate(SNV)transformation methods were applied to pretreating raw NIR diffuse reflectance spectra.The raw and pretreated spectra were divided into several regions,depending on the average spectrum and RSD spectrum.Principal component analysis(PCA)method was used for analyzing the raw and pretreated spectra in different regions in order to reduce the dimensions of input data.The optimum spectral regions and the models' parameters were chosen by comparing the root mean square error of cross-validation(RMSECV)values which were obtained by leave-one-out cross-validation method.The RMSECV values of the RBFNN models for determining the contents of RMP,INH and PZA were 0.00288,0.00226 and 0.00341,respectively.Using these models for predicting the contents of INH,RMP and PZA in prediction set,the RMSEP values were 0.00266,0.00227 and 0.00411,respectively.These results are better than those obtained from PLS models and BPNN models.With additional advantages of fast calculation speed and less dependence on the initial conditions,RBFNN is a suitable tool to model complex systems. 展开更多
关键词 Rifampicin isoniazid and pyrazinamide tablets NIR diffuse reflectance spectroscopy Partial least square back-propagation neural network Radial basis function neural network
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部