The model of back-propagation neural network (BPNN) was presented to demonstrate the effect of restrictive ecological factors, COD/SO 4 2- ratio, pH value, alkalinity (ALK) and SO 4 2- loading rate (Ns), on sulfat...The model of back-propagation neural network (BPNN) was presented to demonstrate the effect of restrictive ecological factors, COD/SO 4 2- ratio, pH value, alkalinity (ALK) and SO 4 2- loading rate (Ns), on sulfate reduction of Sulfate Reducing Bacteria (SRB) in an acidogenic sulfate reducing reactor supplied with molasses as sole organic carbon source and sodium sulfate as electron acceptor. The compare of experimental results and computer simulation was also discussed. It was shown that the method of BPNN had a powerful ability to analyze the ecological characteristic of acidogenic sulfate reducing ecosystem quantitatively.展开更多
The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic ...The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic flow forecasting; however, BPNN is easy to fall into local optimum and slow convergence. In order to overcome these deficiencies, a new approach called social emotion optimization algorithm(SEOA) is proposed in this paper to optimize the linked weights and thresholds of BPNN. Each individual in SEOA represents a BPNN. The availability of the proposed forecasting models is proved with the actual traffic flow data of the 2 nd Ring Road of Beijing. Experiment of results show that the forecasting accuracy of SEOA is improved obviously as compared with the accuracy of particle swarm optimization back-propagation(PSOBP) and simulated annealing particle swarm optimization back-propagation(SAPSOBP) models. Furthermore, since SEOA does not respond to the negative feedback information, Metropolis rule is proposed to give consideration to both positive and negative feedback information and diversify the adjustment methods. The modified BPNN model, in comparison with social emotion optimization back-propagation(SEOBP) model, is more advantageous to search the global optimal solution. The accuracy of Metropolis rule social emotion optimization back-propagation(MRSEOBP) model is improved about 19.54% as compared with that of SEOBP model in predicting the dramatically changing data.展开更多
In this paper pilot based channel estimation is being considered for broadband power line communication (BPLC) networks witch used orthogonal frequency division multiplexing (OFDM) in order to transmit high rate data....In this paper pilot based channel estimation is being considered for broadband power line communication (BPLC) networks witch used orthogonal frequency division multiplexing (OFDM) in order to transmit high rate data. To estimate channel in time or frequency some pilot must be used. Number of these pilots and deployment of them is very important for proper estimation in different channel with varying time and frequency. Carrier sense multiple access (CSMA) and hybrid multiple access protocol are taken into consideration in MAC sub-layer. Multilayered perceptions neural network with backpropagation (BP) learning channel estimator algorithm with different pilot deployment compare to classic algorithm in for channel estimating. Simulation results show the proposed neural network estimation decreases bit error rate and therefore network throughput increases.展开更多
Broadband power line communication (BPLC) gained a lot of interest because of low cost and high performance communication network in access area. In this paper physical (PHY) layer and medium access control (MAC) sub-...Broadband power line communication (BPLC) gained a lot of interest because of low cost and high performance communication network in access area. In this paper physical (PHY) layer and medium access control (MAC) sub-layer of BPLC are considered. Furthermore, effects of bit error rate (BER) are analyzed in MAC sub-layer. Powerful turbo convolutional code (TCC) and wideband orthogonal frequency division multiplexing (OFDM) are used in PHY layer. Carrier sense multiple access (CSMA) and virtual slot multiple access (VSMA) are taken into consideration in MAC sub-layer. Multilayered perceptrons neural network with backpropagation (BP) learning channel estimator algorithm compare to classic algorithm in for channel estimating. The simulation results show that the proposed neural network estimation decreases bit error rate then in MAC sub-layer throughput increases and access delay is decreased.展开更多
Hydropower has made a significant contribution to the economic development of Vietnam,thus it is important to monitor the safety of hydropower dams for the good of the country and the people.In this paper,dam horizont...Hydropower has made a significant contribution to the economic development of Vietnam,thus it is important to monitor the safety of hydropower dams for the good of the country and the people.In this paper,dam horizontal displacement is analyzed and then forecasted using three methods:the multi-regression model,the seasonal integrated auto-regressive moving average(SARIMA)model and the back-propagation neural network(BPNN)merging models.The monitoring data of the Hoa Binh Dam in Vietnam,including horizontal displacement,time,reservoir water level,and air temperature,are used for the experiments.The results indicate that all of these three methods can approximately describe the trend of dam deformation despite their different forecast accuracies.Hence,their short-term forecasts can provide valuable references for the dam safety.展开更多
文摘The model of back-propagation neural network (BPNN) was presented to demonstrate the effect of restrictive ecological factors, COD/SO 4 2- ratio, pH value, alkalinity (ALK) and SO 4 2- loading rate (Ns), on sulfate reduction of Sulfate Reducing Bacteria (SRB) in an acidogenic sulfate reducing reactor supplied with molasses as sole organic carbon source and sodium sulfate as electron acceptor. The compare of experimental results and computer simulation was also discussed. It was shown that the method of BPNN had a powerful ability to analyze the ecological characteristic of acidogenic sulfate reducing ecosystem quantitatively.
基金the Research of New Intelligent Integrated Transport Information System,Technical Plan Project of Binhai New District,Tianjin(No.2015XJR21017)
文摘The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic flow forecasting; however, BPNN is easy to fall into local optimum and slow convergence. In order to overcome these deficiencies, a new approach called social emotion optimization algorithm(SEOA) is proposed in this paper to optimize the linked weights and thresholds of BPNN. Each individual in SEOA represents a BPNN. The availability of the proposed forecasting models is proved with the actual traffic flow data of the 2 nd Ring Road of Beijing. Experiment of results show that the forecasting accuracy of SEOA is improved obviously as compared with the accuracy of particle swarm optimization back-propagation(PSOBP) and simulated annealing particle swarm optimization back-propagation(SAPSOBP) models. Furthermore, since SEOA does not respond to the negative feedback information, Metropolis rule is proposed to give consideration to both positive and negative feedback information and diversify the adjustment methods. The modified BPNN model, in comparison with social emotion optimization back-propagation(SEOBP) model, is more advantageous to search the global optimal solution. The accuracy of Metropolis rule social emotion optimization back-propagation(MRSEOBP) model is improved about 19.54% as compared with that of SEOBP model in predicting the dramatically changing data.
文摘In this paper pilot based channel estimation is being considered for broadband power line communication (BPLC) networks witch used orthogonal frequency division multiplexing (OFDM) in order to transmit high rate data. To estimate channel in time or frequency some pilot must be used. Number of these pilots and deployment of them is very important for proper estimation in different channel with varying time and frequency. Carrier sense multiple access (CSMA) and hybrid multiple access protocol are taken into consideration in MAC sub-layer. Multilayered perceptions neural network with backpropagation (BP) learning channel estimator algorithm with different pilot deployment compare to classic algorithm in for channel estimating. Simulation results show the proposed neural network estimation decreases bit error rate and therefore network throughput increases.
文摘Broadband power line communication (BPLC) gained a lot of interest because of low cost and high performance communication network in access area. In this paper physical (PHY) layer and medium access control (MAC) sub-layer of BPLC are considered. Furthermore, effects of bit error rate (BER) are analyzed in MAC sub-layer. Powerful turbo convolutional code (TCC) and wideband orthogonal frequency division multiplexing (OFDM) are used in PHY layer. Carrier sense multiple access (CSMA) and virtual slot multiple access (VSMA) are taken into consideration in MAC sub-layer. Multilayered perceptrons neural network with backpropagation (BP) learning channel estimator algorithm compare to classic algorithm in for channel estimating. The simulation results show that the proposed neural network estimation decreases bit error rate then in MAC sub-layer throughput increases and access delay is decreased.
基金This research was funded by the China Scholarship Council(CSC)and partially supported by the Project 911(Vietnam).The data analysis was carried out as a part of the second author’s PhD studies at the School of Geodesy and Geomatics,Wuhan University,People’s Republic of China[grant number 2011GXZN02].
文摘Hydropower has made a significant contribution to the economic development of Vietnam,thus it is important to monitor the safety of hydropower dams for the good of the country and the people.In this paper,dam horizontal displacement is analyzed and then forecasted using three methods:the multi-regression model,the seasonal integrated auto-regressive moving average(SARIMA)model and the back-propagation neural network(BPNN)merging models.The monitoring data of the Hoa Binh Dam in Vietnam,including horizontal displacement,time,reservoir water level,and air temperature,are used for the experiments.The results indicate that all of these three methods can approximately describe the trend of dam deformation despite their different forecast accuracies.Hence,their short-term forecasts can provide valuable references for the dam safety.