期刊文献+
共找到1,587篇文章
< 1 2 80 >
每页显示 20 50 100
A Simulated Annealing Algorithm for Training Empirical Potential Functions of Protein Folding 被引量:1
1
作者 WANGYu-hong LIWei 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2005年第1期73-77,共5页
In this paper are reported the local minimum problem by means of current greedy algorithm for training the empirical potential function of protein folding on 8623 non-native structures of 31 globular proteins and a so... In this paper are reported the local minimum problem by means of current greedy algorithm for training the empirical potential function of protein folding on 8623 non-native structures of 31 globular proteins and a solution of the problem based upon the simulated annealing algorithm. This simulated annealing algorithm is indispensable for developing and testing highly refined empirical potential functions. 展开更多
关键词 Empirical potential function of protein folding training Simulated annealing Greedy algorithm
下载PDF
A Second Order Training Algorithm for Multilayer Feedforward Neural Networks
2
作者 谭营 何振亚 邓超 《Journal of Southeast University(English Edition)》 EI CAS 1997年第1期32-36,共5页
ASecondOrderTrainingAlgorithmforMultilayerFeedforwardNeuralNetworksTanYing(谭营)HeZhenya(何振亚)(DepartmentofRad... ASecondOrderTrainingAlgorithmforMultilayerFeedforwardNeuralNetworksTanYing(谭营)HeZhenya(何振亚)(DepartmentofRadioEngineering,Sou... 展开更多
关键词 MULTILAYER FEEDFORWARD NEURAL networks SECOND order training algorithm BP algorithm learning factors XOR problem
下载PDF
Research of Genetic Training Algorithm for Identifying Mechanical Failure Modes within the Framework of Case-Based Reasoning
3
作者 徐元铭 张洋 陈丽娜 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第2期122-129,共8页
The combination of case-based reasoning (CBR) and genetic algorithm (GA) is considered in the problem of failure mode identification in aeronautical component failure analysis. Several imple- mentation issues such... The combination of case-based reasoning (CBR) and genetic algorithm (GA) is considered in the problem of failure mode identification in aeronautical component failure analysis. Several imple- mentation issues such as matching attributes selection, similarity measure calculation, weights learning and training evaluation policies are carefully studied. The testing applications illustrate that an accuracy of 74.67 % can be achieved with 75 balanced-distributed failure cases covering 3 failure modes, and that the resulting learning weight vector can be well applied to the other 2 failure modes, achieving 73.3 % of recognition accuracy. It is also proved that its popularizing capability is good to the recognition of even more mixed failure modes. 展开更多
关键词 failure mode identification case-based reasoning genetic algorithm learning train
下载PDF
DOBD Algorithm for Training Neural Network: Part I. Method 被引量:1
4
作者 吴建昱 何小荣 《过程工程学报》 CAS CSCD 北大核心 2002年第2期171-176,共6页
Overfitting is one of the important problems that restrain the application of neural network. The traditional OBD (Optimal Brain Damage) algorithm can avoid overfitting effectively. But it needs to train the network r... Overfitting is one of the important problems that restrain the application of neural network. The traditional OBD (Optimal Brain Damage) algorithm can avoid overfitting effectively. But it needs to train the network repeatedly with low calculational efficiency. In this paper, the Marquardt algorithm is incorporated into the OBD algorithm and a new method for pruning network-the Dynamic Optimal Brain Damage (DOBD) is introduced. This algorithm simplifies a network and obtains good generalization through dynamically deleting weight parameters with low sensitivity that is defined as the change of error function value with respect to the change of weights. Also a simplified method is presented through which sensitivities can be calculated during training with a little computation. A rule to determine the lower limit of sensitivity for deleting the unnecessary weights and other control methods during pruning and training are introduced. The training course is analyzed theoretically and the reason why DOBD algorithm can obtain a much faster training speed than the OBD algorithm and avoid overfitting effectively is given. 展开更多
关键词 DOBD算法 人工神经网络 研究方法
下载PDF
DOBD Algorithm for Training Neural Network: Part II. Application 被引量:1
5
作者 吴建昱 何小荣 《过程工程学报》 CAS CSCD 北大核心 2002年第3期262-267,共6页
In the first part of the article, a new algorithm for pruning networkDynamic Optimal Brain Damage(DOBD) is introduced. In this part, two cases and an industrial application are worked out to test the new algorithm. It... In the first part of the article, a new algorithm for pruning networkDynamic Optimal Brain Damage(DOBD) is introduced. In this part, two cases and an industrial application are worked out to test the new algorithm. It is verified that the algorithm can obtain good generalization through deleting weight parameters with low sensitivities dynamically and get better result than the Marquardt algorithm or the cross-validation method. Although the initial construction of network may be different, the finial number of free weights pruned by the DOBD algorithm is similar and the number is just close to the optimal number of free weights. The algorithm is also helpful to design the optimal structure of network. 展开更多
关键词 DOBD算法 人工神经网络 应用研究
下载PDF
基于Tri-training的主动学习算法 被引量:3
6
作者 张雁 吴保国 +1 位作者 吕丹桔 林英 《计算机工程》 CAS CSCD 2014年第6期215-218,229,共5页
半监督学习和主动学习都是利用未标记数据,在少量标记数据代价下同时提高监督学习识别性能的有效方法。为此,结合主动学习方法与半监督学习的Tri-training算法,提出一种新的分类算法,通过熵优先采样算法选择主动学习的样本。针对UCI数... 半监督学习和主动学习都是利用未标记数据,在少量标记数据代价下同时提高监督学习识别性能的有效方法。为此,结合主动学习方法与半监督学习的Tri-training算法,提出一种新的分类算法,通过熵优先采样算法选择主动学习的样本。针对UCI数据集和遥感数据,在不同标记训练样本比例下进行实验,结果表明,该算法在标记样本数较少的情况下能取得较好的效果。将主动学习与Tri-training算法相结合,是提高分类性能和泛化性的有效途径。 展开更多
关键词 半监督学习 主动学习 Tri—training算法 熵优先采样 Tri-EPS算法
下载PDF
基于Tri-Training半监督分类算法的研究 被引量:9
7
作者 张雁 吕丹桔 吴保国 《计算机技术与发展》 2013年第7期77-79,83,共4页
在实际应用中,容易获取大量的未标记样本数据,而样本数据是有限的,因此,半监督分类算法成为研究者关注的热点。文中在协同训练Tri-Training算法的基础上,提出了采用两个不同的训练分类器的Simple-Tri-Training方法和对标记数据进行编辑... 在实际应用中,容易获取大量的未标记样本数据,而样本数据是有限的,因此,半监督分类算法成为研究者关注的热点。文中在协同训练Tri-Training算法的基础上,提出了采用两个不同的训练分类器的Simple-Tri-Training方法和对标记数据进行编辑的Edit-Tri-Training方法,给出了这三种分类方法与监督分类SVM的分类实验结果的比较和分析。实验表明,无标记数据的引入,在一定程度上提高了分类的性能;初始训练集和分类器的选取以及标记过程中数据编辑技术,都是影响半监督分类稳定性和性能的关键点。 展开更多
关键词 半监督分类 Tri—training算法 数据编辑
下载PDF
结合Tri-training半监督学习和凸壳向量的SVM主动学习算法 被引量:6
8
作者 徐海龙 龙光正 +2 位作者 别晓峰 吴天爱 郭蓬松 《模式识别与人工智能》 EI CSCD 北大核心 2016年第1期39-46,共8页
为解决监督学习过程中难以获得大量带有类标记样本且样本数据标记代价较高的问题,结合主动学习和半监督学习方法,提出基于Tri-training半监督学习和凸壳向量的SVM主动学习算法.通过计算样本集的壳向量,选择最有可能成为支持向量的壳向... 为解决监督学习过程中难以获得大量带有类标记样本且样本数据标记代价较高的问题,结合主动学习和半监督学习方法,提出基于Tri-training半监督学习和凸壳向量的SVM主动学习算法.通过计算样本集的壳向量,选择最有可能成为支持向量的壳向量进行标记.为解决以往主动学习算法在选择最富有信息量的样本标记后,不再进一步利用未标记样本的问题,将Tri-training半监督学习方法引入SVM主动学习过程,选择类标记置信度高的未标记样本加入训练样本集,利用未标记样本集中有利于学习器的信息.在UCI数据集上的实验表明,文中算法在标记样本较少时获得分类准确率较高和泛化性能较好的SVM分类器,降低SVM训练学习的样本标记代价. 展开更多
关键词 主动学习 半监督学习 支持向量机(SVM) 凸壳向量 Tri—training算法
下载PDF
Tri-training算法中分类器组合的改进 被引量:4
9
作者 李心磊 杨思春 彭月娥 《苏州科技学院学报(自然科学版)》 CAS 2014年第2期52-56,共5页
Tri-training算法是半监督协同算法里的经典算法,该文针对算法中分类器的使用做了一些改进,由原先单一的分类器换成两个不同分类器的组合。使用SVM分类器和最大熵分类器的不同组合作为Tri-training算法里的三个分类器构成分类器模型,然... Tri-training算法是半监督协同算法里的经典算法,该文针对算法中分类器的使用做了一些改进,由原先单一的分类器换成两个不同分类器的组合。使用SVM分类器和最大熵分类器的不同组合作为Tri-training算法里的三个分类器构成分类器模型,然后分别对稀疏型数据、密集型数据与原始Tri-training算法进行实验比较,从而验证改进的有效性。 展开更多
关键词 半监督学习 最大熵 Tri-training算法
下载PDF
基于Tri-training-SSAE半监督学习算法的电力系统暂态稳定评估 被引量:2
10
作者 卫志农 李超凡 +4 位作者 丁爱飞 孙国强 黄蔓云 臧海祥 方熙程 《电力自动化设备》 EI CSCD 北大核心 2023年第7期110-116,共7页
基于机器学习的暂态稳定评估方法主要采用监督学习方法,为了解决监督学习方法所需的有标签样本难以获取的问题,提出基于三体训练-稀疏堆叠自动编码器(Tri-training-SSAE)半监督学习算法的电力系统暂态稳定评估方法。构建基于堆叠稀疏自... 基于机器学习的暂态稳定评估方法主要采用监督学习方法,为了解决监督学习方法所需的有标签样本难以获取的问题,提出基于三体训练-稀疏堆叠自动编码器(Tri-training-SSAE)半监督学习算法的电力系统暂态稳定评估方法。构建基于堆叠稀疏自动编码器的暂态稳定评估模型;在传统的三体训练过程中加入伪标签样本置信度判断,以减小噪声数据对模型训练的影响;以堆叠稀疏自动编码器为基分类器构建三体训练-稀疏堆叠自动编码器模型,利用大量的无标签样本提高模型的泛化能力。通过IEEE 39节点系统与华东某省级电网进行分析验证,结果表明,所提方法在有标签样本数较少时具有更高的评估准确度。 展开更多
关键词 暂态稳定评估 机器学习 半监督学习 三体训练算法 堆叠稀疏自动编码器
下载PDF
基于交叉熵的安全Tri-training算法 被引量:7
11
作者 张永 陈蓉蓉 张晶 《计算机研究与发展》 EI CSCD 北大核心 2021年第1期60-69,共10页
半监督学习方法通过少量标记数据和大量未标记数据来提升学习性能.Tri-training是一种经典的基于分歧的半监督学习方法,但在学习过程中可能产生标记噪声问题.为了减少Tri-training中的标记噪声对未标记数据的预测偏差,学习到更好的半监... 半监督学习方法通过少量标记数据和大量未标记数据来提升学习性能.Tri-training是一种经典的基于分歧的半监督学习方法,但在学习过程中可能产生标记噪声问题.为了减少Tri-training中的标记噪声对未标记数据的预测偏差,学习到更好的半监督分类模型,用交叉熵代替错误率以更好地反映模型预估结果和真实分布之间的差距,并结合凸优化方法来达到降低标记噪声的目的,保证模型效果.在此基础上,分别提出了一种基于交叉熵的Tri-training算法、一个安全的Tri-training算法,以及一种基于交叉熵的安全Tri-training算法.在UCI(University of California Irvine)机器学习库等基准数据集上验证了所提方法的有效性,并利用显著性检验从统计学的角度进一步验证了方法的性能.实验结果表明,提出的半监督学习方法在分类性能方面优于传统的Tri-training算法,其中基于交叉熵的安全Tri-training算法拥有更高的分类性能和泛化能力. 展开更多
关键词 半监督学习 Tri-training算法 交叉熵 凸优化 样本标记
下载PDF
一种自适应的Tri-Training半监督算法 被引量:1
12
作者 彭雅琴 宫宁生 《计算机系统应用》 2016年第8期130-134,共5页
Tri-Training算法是半监督算法的一种,在学习过程中容易错误标注无标记样本,从而降低分类性能,为此提出一种ADP-Tri-Training(Adaptive Tri-Training)算法,改进协同工作方式,根据几何中心设置分类器组成,然后应用模糊数学理论将多个独... Tri-Training算法是半监督算法的一种,在学习过程中容易错误标注无标记样本,从而降低分类性能,为此提出一种ADP-Tri-Training(Adaptive Tri-Training)算法,改进协同工作方式,根据几何中心设置分类器组成,然后应用模糊数学理论将多个独立的分类器组合,使得算法可以在多因素下综合评价样本,并在此基础上引入遗传算法动态设置组合权重以适应于具体的样本集,从而尽可能降低样本标注的错误率,多个实验结果表明ADP-Tri-Training算法具有更好的分类性能. 展开更多
关键词 Tri-training算法 自适应 遗传算法 差异性度量 半监督
下载PDF
基于Tri-training算法的构造性学习方法 被引量:3
13
作者 吴涛 李萍 王允强 《计算机工程》 CAS CSCD 2012年第6期13-15,共3页
构造性机器学习(CML)算法在训练分类器时需要大量有标记样本,而获取这些有标记样本十分困难。为此,提出一种基于Tri-training算法的构造性学习方法。根据已标记的样本,采用不同策略构造3个差异较大的初始覆盖分类网络,用于对未标记数据... 构造性机器学习(CML)算法在训练分类器时需要大量有标记样本,而获取这些有标记样本十分困难。为此,提出一种基于Tri-training算法的构造性学习方法。根据已标记的样本,采用不同策略构造3个差异较大的初始覆盖分类网络,用于对未标记数据进行标记,再将已标记数据加入到训练样本中,调整各分类网络参数,反复进行上述过程,直至获得稳定的分类器。实验结果证明,与CML算法和基于NB分类器的半监督学习算法相比,该方法的分类准确率更高。 展开更多
关键词 半监督学习 构造性机器学习 Tri-training算法 覆盖 分类网络
下载PDF
改进M-training算法的高光谱图像分类 被引量:2
14
作者 崔颖 王雪婷 +1 位作者 陆忠军 王立国 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2018年第10期1688-1694,共7页
为了解决高光谱数据有标签样本数量有限的分类问题,提出将M-training算法应用于高光谱图像分类。采用两个SVM、一个K近邻(KNN)以及一个随机森林(RF)进行分类器组合,对传统M-training算法进行改进,增强分类器的多样性和差异性。为了充分... 为了解决高光谱数据有标签样本数量有限的分类问题,提出将M-training算法应用于高光谱图像分类。采用两个SVM、一个K近邻(KNN)以及一个随机森林(RF)进行分类器组合,对传统M-training算法进行改进,增强分类器的多样性和差异性。为了充分考虑大量无标签样本的影响,采用有标签样本与无标签样本错误率加权作为有标签样本集更新的限制条件,从而有效地扩大了有标签样本集。实验结果表明:改进算法和传统的M-training算法相比较,在总体分类精度与Kappa系数上分别提高1. 85%~12. 10%与0. 021 5~0. 141 3,从而验证了该算法的有效性。 展开更多
关键词 高光谱图像 半监督分类 M-training算法 错误率加权 图像处理 SVM分类器 RF分类器 KNN分类器
下载PDF
基于Co-training的用户属性预测研究
15
作者 金玉 王霞 +2 位作者 琚生根 孙界平 刘玉娇 《四川大学学报(工程科学版)》 CSCD 北大核心 2017年第S2期179-185,共7页
针对当前基于第三方应用数据进行用户属性预测算法研究,其较少考虑应用前台实际使用时长问题,由此,本文在应用的使用频率及使用时长的基础上,构造了应用前台均使用时长特征,该特征能进一步刻画用户对应用的兴趣度;同时,为充分利用大量... 针对当前基于第三方应用数据进行用户属性预测算法研究,其较少考虑应用前台实际使用时长问题,由此,本文在应用的使用频率及使用时长的基础上,构造了应用前台均使用时长特征,该特征能进一步刻画用户对应用的兴趣度;同时,为充分利用大量未标注数据,从多角度特征对用户属性进行预测,由此本文采用了Co-training框架,该框架包含两个均由栈式自编码器与神经网络相结合的网络结构。实验过程中,对于栈式自编码算法,先利用未标注的数据对网络进行参数初始化,使得网络参数处于一个较优的位置,再利用有标注的数据,采用基于准确率的梯度下降算法,对网络参数进行更新,最终达到收敛。实验结果表明,本文算法在准确率、召回率、F1值上均有所提高。 展开更多
关键词 用户属性 CO-training 栈式自编码 梯度下降算法
下载PDF
基于直觉模糊集的Tri-Training改进算法
16
作者 彭雅琴 宫宁生 《微电子学与计算机》 CSCD 北大核心 2016年第3期134-137,141,共5页
Tri-Training算法是半监督算法中的一种,其初始分类器性能受有标记样本影响较大,当样本数目不足时,分类器性能相对较弱,会直接影响后续迭代.为此提出IFS-Tri-Training(Tri-Training based on intuitionistic fuzzy sets)算法,引入SOM算... Tri-Training算法是半监督算法中的一种,其初始分类器性能受有标记样本影响较大,当样本数目不足时,分类器性能相对较弱,会直接影响后续迭代.为此提出IFS-Tri-Training(Tri-Training based on intuitionistic fuzzy sets)算法,引入SOM算法构建直觉模糊集,使得分类器在多因素下综合判别无标记样本,提高无标记样本的使用率,从而在迭代中扩展有标记样本集.在多个UCI数据上进行实验,结果数据表明,分类器的性能得到提高,学习无标记样本过程是影响分类器的关键点. 展开更多
关键词 Tri—training算法 SOM算法 直觉模糊集 半监督
下载PDF
基于Co-training的图像自动标注
17
作者 柯逍 李绍滋 陈国龙 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第4期486-492,共7页
图像自动标注是图像理解与模式识别等领域中具有挑战性的关键研究问题.目前图像自动标注领域存在着一些问题,如未标注数据规模要远大于标注数据规模,只能单独使用某种图像分割策略与某类图像表示方法.针对上述问题,提出了基于Co-trainin... 图像自动标注是图像理解与模式识别等领域中具有挑战性的关键研究问题.目前图像自动标注领域存在着一些问题,如未标注数据规模要远大于标注数据规模,只能单独使用某种图像分割策略与某类图像表示方法.针对上述问题,提出了基于Co-training的图像自动标注方法,通过构建4个独立的特征属性进而建立4个子分类器,将不同的图像分割方法与特征表示方法整合到一个统一框架中,利用提出的基于投票与一致性相结合的自适应算法扩展原始训练集.该方法通过使用Co-training算法,利用大量未标注数据来提升图像自动标注的性能.通过在Corel 5K数据库上进行实验,验证了提出方法的有效性. 展开更多
关键词 图像自动标注 Co—training算法 统一框架 相关模型
下载PDF
融合光谱度量标记迁移和Tri-training的高光谱遥感图像半监督分类算法
18
作者 曹峰 李文涛 +4 位作者 骆剑承 李德玉 钱宇华 白鹤翔 张超 《大数据》 2023年第6期72-89,共18页
针对海量的高光谱遥感图像光谱和丰富的空间信息中可用于分类的有标记样本远少于无标记样本的数据特性,提出了一种融合光谱度量标记迁移和Tri-training的高光谱遥感图像半监督光谱-空间分类算法。该算法提出了一种基于光谱度量的标记迁... 针对海量的高光谱遥感图像光谱和丰富的空间信息中可用于分类的有标记样本远少于无标记样本的数据特性,提出了一种融合光谱度量标记迁移和Tri-training的高光谱遥感图像半监督光谱-空间分类算法。该算法提出了一种基于光谱度量的标记迁移方法,通过结合迁移标记和Tri-training预测标记进行扩充样本标记预测,提高了扩充样本标记的准确性。同时,该算法基于空间相关性选择扩充样本,综合运用光谱和空间特征提升图像分类的精度。在两个公开的高光谱遥感图像数据集上进行了实验,结果表明该算法优于基于Tri-training算法的高光谱遥感图像的分类性能。 展开更多
关键词 高光谱图像分类 半监督分类 纹理特征 光谱度量 Tri-training算法
下载PDF
基于Tri-training直推式支持向量机算法
19
作者 杜红乐 张燕 《河南科学》 2017年第7期1032-1036,共5页
针对直推式支持向量机错误累积及获取无标记样本空间信息慢的问题,结合Tri-training算法、KKT条件及富信息策略提出一种基于Tri-training的直推式支持向量机算法,用KKT条件选择标注样本,用富信息策略选择加入的分类器,利用多个分类器的... 针对直推式支持向量机错误累积及获取无标记样本空间信息慢的问题,结合Tri-training算法、KKT条件及富信息策略提出一种基于Tri-training的直推式支持向量机算法,用KKT条件选择标注样本,用富信息策略选择加入的分类器,利用多个分类器的投票结果进行标注,提高样本标注的准确度,利用多个分类器进行协同训练提高算法的训练速度.最后实验结果表明,算法能够提高最终分类器的分类精度和算法的训练速度. 展开更多
关键词 支持向量机 直推式学习 半监督学习 Tri-training算法
下载PDF
Co-training机器学习方法在中文组块识别中的应用 被引量:8
20
作者 刘世岳 李珩 +1 位作者 张俐 姚天顺 《中文信息学报》 CSCD 北大核心 2005年第3期73-79,共7页
采用半指导机器学习方法co training实现中文组块识别。首先明确了中文组块的定义,co training算法的形式化定义。文中提出了基于一致性的co training选取方法将增益的隐马尔可夫模型(TransductiveHMM)和基于转换规则的分类器(fnTBL)组... 采用半指导机器学习方法co training实现中文组块识别。首先明确了中文组块的定义,co training算法的形式化定义。文中提出了基于一致性的co training选取方法将增益的隐马尔可夫模型(TransductiveHMM)和基于转换规则的分类器(fnTBL)组合成一个分类体系,并与自我训练方法进行了比较,在小规模汉语树库语料和大规模未带标汉语语料上进行中文组块识别,实验结果要比单纯使用小规模的树库语料有所提高,F值分别达到了85 34%和83 4 1% ,分别提高了2 13%和7 2 1%。 展开更多
关键词 计算机应用 中文信息处理 co-training算法 中文组块 分类器
下载PDF
上一页 1 2 80 下一页 到第
使用帮助 返回顶部