Hydraulic actuators are highly nonlinear when they are subjected to different types of model uncertainties and dynamic disturbances.These unfavorable factors adversely affect the control performance of the hydraulic a...Hydraulic actuators are highly nonlinear when they are subjected to different types of model uncertainties and dynamic disturbances.These unfavorable factors adversely affect the control performance of the hydraulic actuator.Although various control methods have been employed to improve the tracking precision of the dynamic system,optimizing and adjusting control gain to mitigate the hydraulic actuator model uncertainties remains elusive.This study presents an adaptive back-stepping sliding mode controller(ABSMC)to enhance the trajectory tracking precision,where the virtual control law is constructed to replace the position error.The adaptive control theory is introduced in back-stepping controller design to compensate for the model uncertainties and time-varying disturbances.Based on Lyapunov theory,the finite-time convergence of the position tracking errors is proved.Furthermore,the effectiveness of the developed control scheme is conducted via extensive comparative experiments.展开更多
Spherical robot has good static and dynamic stability, which provides it with strong viability in hostile environment, but the lack of effective control methods has hindered its application and development. This artic...Spherical robot has good static and dynamic stability, which provides it with strong viability in hostile environment, but the lack of effective control methods has hindered its application and development. This article deals with the dynamic trajectory tracking problem of the spherical robot BHQ-2 designed for unmanned environment exploration. The dynamic model of the spherical robot is established with a simplified Boltzmann-Hamel equation, based on which a trajectory tracking controller is designed by using the back-stepping method. The convergence of the controller is proved with the Lyapunov stability theory. Numerical simulations show that with the controller the robot can globally and asymptotically track desired trajectories, both linear and circular.展开更多
In the hilly region due to scarcity of the plain area, buildings like set back-step back are more often used and also as a big surge in the telecommunication industries, rooftop tower adaptation is very common story n...In the hilly region due to scarcity of the plain area, buildings like set back-step back are more often used and also as a big surge in the telecommunication industries, rooftop tower adaptation is very common story nowadays. In the present study an analogy has been drawn to find out the influence of the rooftop telecommunication tower on the setback-step back building resting on ground at 20° and 30° slopes. A dynamic analysis has been performed and compared on the 4 legged angled section telecommunication tower which is located on the roof top of set back-step back building by varying positions of tower with the existing host structure built up on ground slope of 20° and 30° in both directions(X and Y).展开更多
A theoretical framework of nonlinear flight control for a flexible air-breathing hypersonic vehicle(FAHV)is proposed in this paper.In order to suppress the system uncertainty and external disturbance,an uncertainty an...A theoretical framework of nonlinear flight control for a flexible air-breathing hypersonic vehicle(FAHV)is proposed in this paper.In order to suppress the system uncertainty and external disturbance,an uncertainty and disturbance estimator(UDE)based back-stepping control strategy is designed for a dynamic state-feedback controller to provide stable velocity and altitude tracking.Firstly,the longitudinal dynamics of FAHV is simplified into a closure loop form with lumped uncertainty and disturbance.Then the UDE is applied to estimate the lumped uncertainty and disturbance for the purpose of control input compensation.While a nonlinear tracking differentiator is introduced to solve the problem of“explosion of term”in the back-stepping control.The stability of the UDE-based control strategy is proved by using Lyapunov stability theorem.Finally,simulation results are presented to demonstrate the capacity of the proposed control strategy.展开更多
Back-stepping control (BSC), which is deemed effective for a non-holonomic system, is applied to improving both responsiveness and resolution performance of an electronic control throttle (ECT) used in automotive engi...Back-stepping control (BSC), which is deemed effective for a non-holonomic system, is applied to improving both responsiveness and resolution performance of an electronic control throttle (ECT) used in automotive engines. This paper is characterized by the use of a two-step type BSC in a manner that achieves an improvement in responsiveness with the ETC operated in a fully opened state by adding a derivative term in Step 1 and the improvement in resolution performance with the ETC operated in a minutely opened state by adding an adaptive feature in the form of an integral term using the control deviation in Step 2. This paper presents an ECT control expressed as a second-order system including nonlinearities such as backlash of gear train and static friction in sliding area, a BSC system designed based on Lyapunov stability, and a determination method for control parameters. Also, a two-step type BSC system is formulated using Matlab/Simulink with a physics model as a control object. As a result of simulation analyses, it becomes clear that the BSC system can achieve quicker response because the derivative term works effectively and finer resolution because the adaptive control absorbs the error margin of the nonlinear compensation than conventional PID control.展开更多
The three-phase inverter with LC filter has been widely applied in many industrial areas,mainly for non-connected grid utilization.Meanwhile,the standard of power quality needed in industrial applications tends to gro...The three-phase inverter with LC filter has been widely applied in many industrial areas,mainly for non-connected grid utilization.Meanwhile,the standard of power quality needed in industrial applications tends to grow as time goes by,requiring more advanced and economical control strategies to fulfil this objective without comprising the stability of the system.For this reason,a comparative study of Back-stepping control strategy and PID control method are presented in this paper,based on an unconnected-to-grid three-phase inverter with LC filter.The control purpose is to produce sinusoidal load currents with amplitude and frequency fixed by a reference signal,where both steady state performance as well as transient performance are examined and compared,with fully consideration of implementation cost.Two controllers have been built in a Matlab/Simulink environment,where Park transformation(abc/dq0)and bipolar Sinusoidal Pulse Width Modulation(SPWM)strategy are implemented.For validation,hardware verification is also presented based on dSPACE DS1103 control-based prototype.展开更多
基金supported by the fund of Henan Key Laboratory of Superhard Abrasives and Grinding Equipment,Henan University of Technology(Grant No.JDKFJJ2023005)the Key Science and Technology Program of Henan Province(Grant Nos.242102221001 and 232102220085)the Science and Technology Key Project Foundation of Henan Provincial Education Department(Grant No.23A460014).
文摘Hydraulic actuators are highly nonlinear when they are subjected to different types of model uncertainties and dynamic disturbances.These unfavorable factors adversely affect the control performance of the hydraulic actuator.Although various control methods have been employed to improve the tracking precision of the dynamic system,optimizing and adjusting control gain to mitigate the hydraulic actuator model uncertainties remains elusive.This study presents an adaptive back-stepping sliding mode controller(ABSMC)to enhance the trajectory tracking precision,where the virtual control law is constructed to replace the position error.The adaptive control theory is introduced in back-stepping controller design to compensate for the model uncertainties and time-varying disturbances.Based on Lyapunov theory,the finite-time convergence of the position tracking errors is proved.Furthermore,the effectiveness of the developed control scheme is conducted via extensive comparative experiments.
基金National Natural Science Foundation of China (50705003)National High Technology Research and Development Program of China (2007AA04Z252).
文摘Spherical robot has good static and dynamic stability, which provides it with strong viability in hostile environment, but the lack of effective control methods has hindered its application and development. This article deals with the dynamic trajectory tracking problem of the spherical robot BHQ-2 designed for unmanned environment exploration. The dynamic model of the spherical robot is established with a simplified Boltzmann-Hamel equation, based on which a trajectory tracking controller is designed by using the back-stepping method. The convergence of the controller is proved with the Lyapunov stability theory. Numerical simulations show that with the controller the robot can globally and asymptotically track desired trajectories, both linear and circular.
文摘In the hilly region due to scarcity of the plain area, buildings like set back-step back are more often used and also as a big surge in the telecommunication industries, rooftop tower adaptation is very common story nowadays. In the present study an analogy has been drawn to find out the influence of the rooftop telecommunication tower on the setback-step back building resting on ground at 20° and 30° slopes. A dynamic analysis has been performed and compared on the 4 legged angled section telecommunication tower which is located on the roof top of set back-step back building by varying positions of tower with the existing host structure built up on ground slope of 20° and 30° in both directions(X and Y).
基金Supported by National Natural Science Foundation of China(11672235)。
文摘A theoretical framework of nonlinear flight control for a flexible air-breathing hypersonic vehicle(FAHV)is proposed in this paper.In order to suppress the system uncertainty and external disturbance,an uncertainty and disturbance estimator(UDE)based back-stepping control strategy is designed for a dynamic state-feedback controller to provide stable velocity and altitude tracking.Firstly,the longitudinal dynamics of FAHV is simplified into a closure loop form with lumped uncertainty and disturbance.Then the UDE is applied to estimate the lumped uncertainty and disturbance for the purpose of control input compensation.While a nonlinear tracking differentiator is introduced to solve the problem of“explosion of term”in the back-stepping control.The stability of the UDE-based control strategy is proved by using Lyapunov stability theorem.Finally,simulation results are presented to demonstrate the capacity of the proposed control strategy.
文摘Back-stepping control (BSC), which is deemed effective for a non-holonomic system, is applied to improving both responsiveness and resolution performance of an electronic control throttle (ECT) used in automotive engines. This paper is characterized by the use of a two-step type BSC in a manner that achieves an improvement in responsiveness with the ETC operated in a fully opened state by adding a derivative term in Step 1 and the improvement in resolution performance with the ETC operated in a minutely opened state by adding an adaptive feature in the form of an integral term using the control deviation in Step 2. This paper presents an ECT control expressed as a second-order system including nonlinearities such as backlash of gear train and static friction in sliding area, a BSC system designed based on Lyapunov stability, and a determination method for control parameters. Also, a two-step type BSC system is formulated using Matlab/Simulink with a physics model as a control object. As a result of simulation analyses, it becomes clear that the BSC system can achieve quicker response because the derivative term works effectively and finer resolution because the adaptive control absorbs the error margin of the nonlinear compensation than conventional PID control.
文摘The three-phase inverter with LC filter has been widely applied in many industrial areas,mainly for non-connected grid utilization.Meanwhile,the standard of power quality needed in industrial applications tends to grow as time goes by,requiring more advanced and economical control strategies to fulfil this objective without comprising the stability of the system.For this reason,a comparative study of Back-stepping control strategy and PID control method are presented in this paper,based on an unconnected-to-grid three-phase inverter with LC filter.The control purpose is to produce sinusoidal load currents with amplitude and frequency fixed by a reference signal,where both steady state performance as well as transient performance are examined and compared,with fully consideration of implementation cost.Two controllers have been built in a Matlab/Simulink environment,where Park transformation(abc/dq0)and bipolar Sinusoidal Pulse Width Modulation(SPWM)strategy are implemented.For validation,hardware verification is also presented based on dSPACE DS1103 control-based prototype.