This paper deals with a new concept for calculating DC harmonic voltages and currents of line- commutated HVDC systems. In contrast to the conventional method, this method is useful for BTB (Back-To-Back) HVDC systems...This paper deals with a new concept for calculating DC harmonic voltages and currents of line- commutated HVDC systems. In contrast to the conventional method, this method is useful for BTB (Back-To-Back) HVDC systems without smoothing reactors or PTP (Point-To-Point) with very short transmission line. This method proposes a new direction for HVDC system design and analysis. The proposed method is applied to a 50 Hz/60 Hz BTB test system and a synchronized BTB test system. After simulation and verification, the new results are introduced.展开更多
A comprehensive predictive strategy was proposed for the neutral-point balancing control of back-to-back three-level converters. The phase currents at both sides and the DC-link capacitor voltages were measured for th...A comprehensive predictive strategy was proposed for the neutral-point balancing control of back-to-back three-level converters. The phase currents at both sides and the DC-link capacitor voltages were measured for the prediction of the neutral-point current. A quality function was found to balance the neutral-point, and a metabolic on-times distribution factor was used as a predicator to minimize the quality function at each switching state. Simulation results show that the proposed method produces smaller ripples in tested signals compared with the established one, namely, 9.15% less in a total harmonic distortion(THD) of line-to-line voltage, 1.08% less in the THD of phase current, and 0.9 V less in the ripple of the neutral-point voltage. The obtained experimental results show that the main harmonics of the line-to-line voltage and the phase current in the proposed method are improved by 10 d B and 6 d B, respectively, and the ripple of neutral-point voltage is halved compared to the established one.展开更多
The first fully localized back-to-back DC intercon-nection project which connects Northwest and CentralChina power grids, 330-kV Lingbao Converter Stationhas now started construction for expansion.Lingbao back-to-back...The first fully localized back-to-back DC intercon-nection project which connects Northwest and CentralChina power grids, 330-kV Lingbao Converter Stationhas now started construction for expansion.Lingbao back-to-back converter station situated inLingbao City of Henan Province is the first DC intercon-展开更多
This paper presents a unified positive-and negative-sequence dual-dq dynamic model of wind-turbine driven doubly-fed induction generator(DFIG) under unbalanced grid voltage conditions. Strategies for enhanced control ...This paper presents a unified positive-and negative-sequence dual-dq dynamic model of wind-turbine driven doubly-fed induction generator(DFIG) under unbalanced grid voltage conditions. Strategies for enhanced control and operation of a DFIG-used back-to-back(BTB) PWM voltage source converter(VSC) are proposed. The modified control design for the grid-side converter in the stationary αβ frames diminishes the amplitude of DC-link voltage ripples of twice the grid frequency,and the two proposed control targets for the rotor-side converter are alternatively achieved,which,as a result,improve the fault-ride through(FRT) capability of the DFIG based wind power generation systems during unbalanced network supply. A complete unbalanced control scheme with both grid-and rotor-side converters included is designed. Finally,simulation was carried out on a 1.5 MW wind-turbine driven DFIG system and the validity of the developed unified model and the feasibility of the proposed control strategies are all confirmed by the simulated results.展开更多
The first completely localized DC back-to-back project for asynchronous interconnection between Northwest and Central China plays an important role in realizing national power grid interconnection, spurring indigenous...The first completely localized DC back-to-back project for asynchronous interconnection between Northwest and Central China plays an important role in realizing national power grid interconnection, spurring indigenous manufacturing industries and promoting DC transmission equipment. Insisting on the principle of autonomous innovation, this project was based on domestic forces in every aspect, from engineering organization, system design, equipment completion, engineering design, equipment manufacturing and procurement to construction and debugging. By passing through strict quality control, intermediate supervision and acceptance test and assessment, the project has been proved up to world advanced level.展开更多
Recent advances in a power electronic device called an electric spring(ES)provide feasible solutions to meeting critical customers’requirements for voltage quality.A new version of the ES was introduced based on a ba...Recent advances in a power electronic device called an electric spring(ES)provide feasible solutions to meeting critical customers’requirements for voltage quality.A new version of the ES was introduced based on a back-to-back converter(ESBC)configuration which extends the operating range and improves the voltage suppression performance to facilitate ultra-high renewable penetration.This paper proposes an efficient control method to facilitate the voltage regulation function of an ESBC with non-critical loads.Particularly,the proposed method is suitable for various load characteristics.We also develop a consensus algorithm to coordinate multiple ESs for maintaining critical bus voltage in distribution systems with ultra-high renewable penetration.The proposed operation of the ESBC is verified by simulation of a modified IEEE 15-bus distribution network.The results show that the ESBC can effectively regulate system voltage and is superior to the original version of the ES.展开更多
In this paper, based on the analysis of the mathematical model in a common synchronous reference frame of the brushless doubly-fed generator (BDFG), the grid connection strategy and maximum energy extraction control...In this paper, based on the analysis of the mathematical model in a common synchronous reference frame of the brushless doubly-fed generator (BDFG), the grid connection strategy and maximum energy extraction control were both analyzed. Besides, the transient simula- tion of no-load model and generation model of the BDFG have been developed on the MATLAB/Simulink platform. The test results during cutting-in grid confirmed the good dynamic performance of grid synchronization and effective power control approach for the BDFG-based variable speed wind turbines.展开更多
The provision of wind farm(WF)grid codes(GCs)has become imperative for sustained grid operations,especially for WFs with permanent-magnet synchronous generator(PMSG)wind energy conversion system.Numerous techniques ha...The provision of wind farm(WF)grid codes(GCs)has become imperative for sustained grid operations,especially for WFs with permanent-magnet synchronous generator(PMSG)wind energy conversion system.Numerous techniques have been developed for executing GC requirements in the event of grid faults.Among the methods,an intriguing strategy is to enhance the performance of back-to-back(BTB)converter controllers.In this research,the PID-type terminal sliding mode control(PID-TSMC)scheme is implemented for both machine-side and grid-side converter-modified controllers of BTB-converter,to reinforce the nonlinear relationship among the state-variable and the control input.The application of this control scheme decreases the response time and improves the robustness of the BTB-converter controllers regarding uncertainty of parameters and external disturbances.The grid-side converter tracks the maximum power point,contributing to the rapid decrease of generator active power output during faults.This frees up converter capacity for injecting GC-compliant reactive current into the grid.Besides,the machine-side converter regulates DC-link voltage,in which its variations during external disturbances decrease substantially with the PID-TSMC.The discussions on the simulations contemplate on the robustness and efficiency of the implemented PID-TSMC strategy in comparison to other BTB-converter control strategies.展开更多
To enhance the robustness and dynamic performance of a self-excited induction generator (SEIG) used in a stand-alone wind energy system (WES), a virtual flux oriented control (VFOC) based on nonlinear super-twisting s...To enhance the robustness and dynamic performance of a self-excited induction generator (SEIG) used in a stand-alone wind energy system (WES), a virtual flux oriented control (VFOC) based on nonlinear super-twisting sliding mode control (STSMC) is adopted. STSMC is used to replace the conventional proportional-integral-Fuzzy Logic Controller (PI-FLC) of the inner current control loops. The combination of the proposed control strategy with space vector modulation (SVM) applied to a PWM rectifier brings many advantages such as reduction in harmonics, and precise and rapid tracking of the references. The performance of the proposed control technique (STSMC-VFOC-SVM) is verified through simulations and compared with the traditional technique (PI-FLC-VFOC-SVM). It shows that the proposed method improves the dynamics of the system with reduced current harmonics. In addition, the use of a virtual flux estimator instead of a phase-locked loop (PLL) eliminates the line voltage sensors and thus increases the reliability of the system.展开更多
文摘This paper deals with a new concept for calculating DC harmonic voltages and currents of line- commutated HVDC systems. In contrast to the conventional method, this method is useful for BTB (Back-To-Back) HVDC systems without smoothing reactors or PTP (Point-To-Point) with very short transmission line. This method proposes a new direction for HVDC system design and analysis. The proposed method is applied to a 50 Hz/60 Hz BTB test system and a synchronized BTB test system. After simulation and verification, the new results are introduced.
基金Project(61074018)supported by the National Natural Science Foundation of ChinaProject(2012kfjj06)supported by Hunan Province Key Laboratory of Smart Grids Operation and Control(Changsha University of Science and Technology),China
文摘A comprehensive predictive strategy was proposed for the neutral-point balancing control of back-to-back three-level converters. The phase currents at both sides and the DC-link capacitor voltages were measured for the prediction of the neutral-point current. A quality function was found to balance the neutral-point, and a metabolic on-times distribution factor was used as a predicator to minimize the quality function at each switching state. Simulation results show that the proposed method produces smaller ripples in tested signals compared with the established one, namely, 9.15% less in a total harmonic distortion(THD) of line-to-line voltage, 1.08% less in the THD of phase current, and 0.9 V less in the ripple of the neutral-point voltage. The obtained experimental results show that the main harmonics of the line-to-line voltage and the phase current in the proposed method are improved by 10 d B and 6 d B, respectively, and the ripple of neutral-point voltage is halved compared to the established one.
文摘The first fully localized back-to-back DC intercon-nection project which connects Northwest and CentralChina power grids, 330-kV Lingbao Converter Stationhas now started construction for expansion.Lingbao back-to-back converter station situated inLingbao City of Henan Province is the first DC intercon-
基金Project (No. 50577056) supported by the National Natural ScienceFoundation of China
文摘This paper presents a unified positive-and negative-sequence dual-dq dynamic model of wind-turbine driven doubly-fed induction generator(DFIG) under unbalanced grid voltage conditions. Strategies for enhanced control and operation of a DFIG-used back-to-back(BTB) PWM voltage source converter(VSC) are proposed. The modified control design for the grid-side converter in the stationary αβ frames diminishes the amplitude of DC-link voltage ripples of twice the grid frequency,and the two proposed control targets for the rotor-side converter are alternatively achieved,which,as a result,improve the fault-ride through(FRT) capability of the DFIG based wind power generation systems during unbalanced network supply. A complete unbalanced control scheme with both grid-and rotor-side converters included is designed. Finally,simulation was carried out on a 1.5 MW wind-turbine driven DFIG system and the validity of the developed unified model and the feasibility of the proposed control strategies are all confirmed by the simulated results.
文摘The first completely localized DC back-to-back project for asynchronous interconnection between Northwest and Central China plays an important role in realizing national power grid interconnection, spurring indigenous manufacturing industries and promoting DC transmission equipment. Insisting on the principle of autonomous innovation, this project was based on domestic forces in every aspect, from engineering organization, system design, equipment completion, engineering design, equipment manufacturing and procurement to construction and debugging. By passing through strict quality control, intermediate supervision and acceptance test and assessment, the project has been proved up to world advanced level.
基金fully supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region under Theme-based Research Scheme through Project No.T23-701/14-N
文摘Recent advances in a power electronic device called an electric spring(ES)provide feasible solutions to meeting critical customers’requirements for voltage quality.A new version of the ES was introduced based on a back-to-back converter(ESBC)configuration which extends the operating range and improves the voltage suppression performance to facilitate ultra-high renewable penetration.This paper proposes an efficient control method to facilitate the voltage regulation function of an ESBC with non-critical loads.Particularly,the proposed method is suitable for various load characteristics.We also develop a consensus algorithm to coordinate multiple ESs for maintaining critical bus voltage in distribution systems with ultra-high renewable penetration.The proposed operation of the ESBC is verified by simulation of a modified IEEE 15-bus distribution network.The results show that the ESBC can effectively regulate system voltage and is superior to the original version of the ES.
文摘In this paper, based on the analysis of the mathematical model in a common synchronous reference frame of the brushless doubly-fed generator (BDFG), the grid connection strategy and maximum energy extraction control were both analyzed. Besides, the transient simula- tion of no-load model and generation model of the BDFG have been developed on the MATLAB/Simulink platform. The test results during cutting-in grid confirmed the good dynamic performance of grid synchronization and effective power control approach for the BDFG-based variable speed wind turbines.
文摘The provision of wind farm(WF)grid codes(GCs)has become imperative for sustained grid operations,especially for WFs with permanent-magnet synchronous generator(PMSG)wind energy conversion system.Numerous techniques have been developed for executing GC requirements in the event of grid faults.Among the methods,an intriguing strategy is to enhance the performance of back-to-back(BTB)converter controllers.In this research,the PID-type terminal sliding mode control(PID-TSMC)scheme is implemented for both machine-side and grid-side converter-modified controllers of BTB-converter,to reinforce the nonlinear relationship among the state-variable and the control input.The application of this control scheme decreases the response time and improves the robustness of the BTB-converter controllers regarding uncertainty of parameters and external disturbances.The grid-side converter tracks the maximum power point,contributing to the rapid decrease of generator active power output during faults.This frees up converter capacity for injecting GC-compliant reactive current into the grid.Besides,the machine-side converter regulates DC-link voltage,in which its variations during external disturbances decrease substantially with the PID-TSMC.The discussions on the simulations contemplate on the robustness and efficiency of the implemented PID-TSMC strategy in comparison to other BTB-converter control strategies.
基金supported by the:Direction Générale de la Recherche Scientifique et du Développement Technologique(DGRSDT).
文摘To enhance the robustness and dynamic performance of a self-excited induction generator (SEIG) used in a stand-alone wind energy system (WES), a virtual flux oriented control (VFOC) based on nonlinear super-twisting sliding mode control (STSMC) is adopted. STSMC is used to replace the conventional proportional-integral-Fuzzy Logic Controller (PI-FLC) of the inner current control loops. The combination of the proposed control strategy with space vector modulation (SVM) applied to a PWM rectifier brings many advantages such as reduction in harmonics, and precise and rapid tracking of the references. The performance of the proposed control technique (STSMC-VFOC-SVM) is verified through simulations and compared with the traditional technique (PI-FLC-VFOC-SVM). It shows that the proposed method improves the dynamics of the system with reduced current harmonics. In addition, the use of a virtual flux estimator instead of a phase-locked loop (PLL) eliminates the line voltage sensors and thus increases the reliability of the system.