期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
AN IMPROVED SPARSITY ADAPTIVE MATCHING PURSUIT ALGORITHM FOR COMPRESSIVE SENSING BASED ON REGULARIZED BACKTRACKING 被引量:3
1
作者 Zhao Ruizhen Ren Xiaoxin +1 位作者 Han Xuelian Hu Shaohai 《Journal of Electronics(China)》 2012年第6期580-584,共5页
Sparsity Adaptive Matching Pursuit (SAMP) algorithm is a widely used reconstruction algorithm for compressive sensing in the case that the sparsity is unknown. In order to match the sparsity more accurately, we presen... Sparsity Adaptive Matching Pursuit (SAMP) algorithm is a widely used reconstruction algorithm for compressive sensing in the case that the sparsity is unknown. In order to match the sparsity more accurately, we presented an improved SAMP algorithm based on Regularized Backtracking (SAMP-RB). By adapting a regularized backtracking step to SAMP algorithm in each iteration stage, the proposed algorithm can flexibly remove the inappropriate atoms. The experimental results show that SAMP-RB reconstruction algorithm greatly improves SAMP algorithm both in reconstruction quality and computational time. It has better reconstruction efficiency than most of the available matching pursuit algorithms. 展开更多
关键词 Compressive sensing Reconstruction algorithm Sparsity adaptive Regularized back-tracking
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部