期刊文献+
共找到124篇文章
< 1 2 7 >
每页显示 20 50 100
Estimating shear strength of high-level pillars supported with cemented backfilling using the HoekeBrown strength criterion
1
作者 Kaizong Xia Congxin Chen +3 位作者 Xiumin Liu Yue Wang Xuanting Liu Jiahao Yuan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期454-469,共16页
Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the s... Deep metal mines are often mined using the high-level pillars with subsequent cementation backfilling(HLSCB)mining method.At the design stage,it is therefore important to have a reasonable method for determining the shear strength of the high-level pillars(i.e.cohesion and internal friction angle)when they are supported by cemented backfilling.In this study,a formula was derived for the upper limit of the confining pressure σ3max on a high-level pillar supported by cemented backfilling in a deep metal mine.A new method of estimating the shear strength of such pillars was then proposed based on the Hoek eBrown failure criterion.Our analysis indicates that the horizontal stress σhh acting on the cemented backfill pillar can be simplified by expressing it as a constant value.A reasonable and effective value for σ3max can then be determined.The value of s3max predicted using the proposed method is generally less than 3 MPa.Within this range,the shear strength of the high-level pillar is accurately calculated using the equivalent MohreCoulomb theory.The proposed method can effectively avoid the calculation of inaccurate shear strength values for the high-level pillars when the original HoekeBrown criterion is used in the presence of large confining pressures,i.e.the situation in which the cohesion value is too large and the friction angle is too small can effectively be avoided.The proposed method is applied to a deep metal mine in China that is being excavated using the HLSCB method.The shear strength parameters of the high-level pillars obtained using the proposed method were input in the numerical simulations.The numerical results show that the recommended level heights and sizes of the high-level pillars and rooms in the mine are rational. 展开更多
关键词 Deep metal mines High-level pillars HoekeBrown strength criterion Cemented backfilling Confining pressure Shear strength
下载PDF
Mechanical properties and damage characteristics of solidified body-coal combination in continuous driving and gangue backfilling 被引量:1
2
作者 Yi Tan Hao Cheng +4 位作者 Wenbing Guo Erhu Bai Shaopu Zhang Yu Wang Zihao Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第10期1217-1228,共12页
Recovery of the coal buried under buildings,railways and water bodies and the residual coal in irregularly arranged fully mechanized mining faces is a common engineering problem facing underground coal mining.In this ... Recovery of the coal buried under buildings,railways and water bodies and the residual coal in irregularly arranged fully mechanized mining faces is a common engineering problem facing underground coal mining.In this study,a mining technology of continuous driving and gangue backfilling(CDGB)was proposed.The technology,which can not only alleviate ground subsidence and gangue discharge,but also release the above-mentioned coals,contributes to green and efficient sustainable development of mining.The stability of the system of the solidified body-reserved coal pillar combination(S-C combination)is crucial to the CDGB technology.Therefore,it is of great significance to explore the mechanical and damage characteristics of S-C combination in the synergistic bearing process.First,four sets of differentshaped S-C combination specimens were fabricated and a S-C combination bearing structure in CDGB was constructed to explore the differences in mechanical characteristics and damage modes of different-shaped S-C combination specimens during CDGB.Subsequently,their surface strain field evolutions and acoustic emission(AE)response characteristics in the load-bearing process were obtained with the aid of the digital image correlation technique and the AE signal monitoring system.Furthermore,a damage evolution model based on AE parameters and mechanical parameters was established to clarify the damage evolution law.The following results were obtained:(1)The free area of S-C combination can serve as a quantitative index to evaluate the stability of the overburden control system;(2)The concept of critical value k of the free area was first proposed.When the free area exceeds the critical value k(free area ratio greater than 1.13),the deformation resistance and the free area changes becomes negatively correlated;(3)As the free area expands,the failure of the S-C combination specimen evolves from tensile failure to shear failure.The distribution characteristics of the axial strain field also verified such a change in the failure mode;(4)When the free area expands,the peak AE count gradually changes from“double peaks”to“a single peak”.In this process,the expansion of free area shortens the time for accumulating and releasing energy during loading.Micro cracks generated in the specimen change from a phased steep growth to a continuous increase,and the process in which micro cracks develop,converge,intersect and connect to form macro cracks accelerates.The damage evolution law concluded based on AE parameters and mechanical parameters can well characterize the damage evolution process of S-C combination,providing certain reference for the study on the synergistic bearing of S-C combination during CDGB. 展开更多
关键词 Continuous driving and gangue backfilling Solidified body-coal combination Mechanical properties Damage characteristics Digital image correlation technology Acoustic emission
下载PDF
Failure characteristics and the damage evolution of a composite bearing structure in pillar-side cemented paste backfilling
3
作者 Boqiang Cui Guorui Feng +6 位作者 Jinwen Bai Gaili Xue Kai Wang Xudong Shi Shanyong Wang Zehua Wang Jun Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第8期1524-1537,共14页
A backfilling body-coal pillar-backfilling body(BPB)structure formed by pillar-side cemented paste backfilling can bear overburden stress and ensure safe mining.However,the failure response of BPB composite samples mu... A backfilling body-coal pillar-backfilling body(BPB)structure formed by pillar-side cemented paste backfilling can bear overburden stress and ensure safe mining.However,the failure response of BPB composite samples must be investigated.This paper examines the deformation characteristics and damage evolution of six types of BPB composite samples using a digital speckle correlation method under uniaxial compression conditions.A new damage evolution equation was established on the basis of the input strain energy and dissipated strain energy at the peak stress.The prevention and control mechanisms of the backfilling body on the coal pillar instability were discussed.The results show that the deformation localization and macroscopic cracks of the BPB composite samples first appeared at the coal-backfilling interface,and then expanded to the backfilling elements,ultimately appearing in the coal elements.The elastic strain energy in the BPB composite samples reached a maximum at the peak stress,whereas the dissipated energy continued to accumulate and increase.The damage evolution curve and equation agree well with the test results,providing further understanding of instability prevention and the control mechanisms of the BPB composite samples.The restraining effect on the coal pillar was gradually reduced with decreasing backfilling body element's volume ratio,and the BPB composite structure became more vulnerable to failure.This research is expected to guide the design,stability monitoring,instability prevention,and control of BPB structures in pillar-side cemented paste backfilling mining. 展开更多
关键词 backfilling body-coal pillar-backfilling body composite structure digital speckle correlation method uniaxial compression deformation characteristics damage evolution
下载PDF
一种简化的基于First-Fit的Backfilling调度策略——RB-FIFT 被引量:6
4
作者 叶庆华 梁毅 孟丹 《计算机工程与应用》 CSCD 北大核心 2003年第2期70-74,共5页
机群作业管理系统是机群系统的重要组成部分,而作业调度策略又是机群作业管理系统的核心内容。作业调度策略的选择不仅关系到机群系统的利用率,还决定用户作业的响应速度和平均执行时间。在节点分配基于空间共享策略(Space-Sharing)的... 机群作业管理系统是机群系统的重要组成部分,而作业调度策略又是机群作业管理系统的核心内容。作业调度策略的选择不仅关系到机群系统的利用率,还决定用户作业的响应速度和平均执行时间。在节点分配基于空间共享策略(Space-Sharing)的机群系统中,传统的基于先来先服务的First-Fit调度策略虽然能够提高机群系统的利用率,却容易引起饥饿问题。文章基于传统的先来先服务的调度策略,提出了一种简化的Backfilling算法,简要叙述了该算法的设计和实现,最后根据模拟实验结果,从用户和系统的角度分析了该算法的性能。 展开更多
关键词 First-Fit算法 RB-FIFT算法 backfilling调度策略 机群作业管理系统
下载PDF
Damage evolution of rock-encased-backfill structure under stepwise cyclic triaxial loading 被引量:1
5
作者 Xin Yu Yuye Tan +4 位作者 Weidong Song John Kemeny Shengwen Qi Bowen Zheng Songfeng Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期597-615,共19页
Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB ... Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB structures,a series of triaxial stepwise-increasing-amplitude cyclic loading experiments was conducted with cylindrical RB specimens(rock on outside,backfill on inside)with different volume fractions of rock(VF=0.48,0.61,0.73,and 0.84),confining pressures(0,6,9,and 12 MPa),and cyclic loading rates(200,300,400,and 500 N/s).The damage evolution and meso-crack formation during the cyclic tests were analyzed with results from stress-strain hysteresis loops,acoustic emission events,and post-failure X-ray 3D fracture morphology.The results showed significant differences between cyclic and monotonic loadings of RB specimens,particularly with regard to the generation of shear microcracks,the development of stress memory and strain hardening,and the contact forces and associated friction that develops along the rock-backfill interface.One important finding is that as a function of the number of cycles,the elastic strain increases linearly and the dissipated energy increases exponentially.Also,compared with monotonic loading,the cyclic strain hardening characteristics are more sensitive to rising confining pressures during the initial compaction stage.Another finding is that compared with monotonic loading,more shear microcracks are generated during every reloading stage,but these microcracks tend to be dispersed and lessen the likelihood of large shear fracture formation.The transition from elastic to plastic behavior varies depending on the parameters of each test(confinement,volume fraction,and cyclic rate),and an interesting finding was that the transformation to plastic behavior is significantly lower under the conditions of 0.73 rock volume fraction,400 N/s cyclic loading rate,and 9 MPa confinement.All the findings have important practical implications on the ability of backfill to support underground excavations. 展开更多
关键词 Rock and backfill Triaxial cyclic loading volume fraction Damage evolution 3D visualization
下载PDF
基于Backfilling调度算法的“扩履适足”改进算法 被引量:2
6
作者 付云虹 白树仁 方俊 《计算机工程与科学》 CSCD 2006年第9期94-96,122,共4页
在众多的并行作业调度算法中,Backfilling通常被广泛认为是有效提高CPU利用率的一种算法。该算法是在FCFS算法的基础上,将队列中较小的作业回填(Backfill)到空闲CPU,以提高CPU利用率。但是,当空闲CPU数量仍然无法满足Backfilling算法中... 在众多的并行作业调度算法中,Backfilling通常被广泛认为是有效提高CPU利用率的一种算法。该算法是在FCFS算法的基础上,将队列中较小的作业回填(Backfill)到空闲CPU,以提高CPU利用率。但是,当空闲CPU数量仍然无法满足Backfilling算法中小作业的回填要求时,系统仍有部分CPU闲置,因而也难以达到更好地提高CPU利用率的目的。对于共享内存体系结构的并行计算机系统,本文提出了基于Backfilling算法的“扩履适足”的改进算法。该算法以正在运行的作业的CPU利用率为依据,通过动态调整正在运行作业的CPU数,扩大可供回填(backfill)的CPU空间,使得Backfilling算法无法回填的作业得到运行,弥补了Backfilling算法的不足,大大提高了共享内存体系结构并行计算机系统的CPU利用率。 展开更多
关键词 并行计算 作业调度 CPU利用率 backfilling算法 扩履适足
下载PDF
结合Backfilling和空闲资源调度的云工作流调度方法 被引量:2
7
作者 谭海中 赵丽 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第6期149-157,共9页
针对云计算中工作流的科学调度问题,提出了一种快速且有效的调度方案.首先,根据计算速度将所有的资源节点以降序方式排列;然后,调度程序通过深度优先搜索,检查任务之间的依赖关系,并根据截止期限对待执行任务进行加权排序;接着,计算每... 针对云计算中工作流的科学调度问题,提出了一种快速且有效的调度方案.首先,根据计算速度将所有的资源节点以降序方式排列;然后,调度程序通过深度优先搜索,检查任务之间的依赖关系,并根据截止期限对待执行任务进行加权排序;接着,计算每个待执行任务所使用的资源的时隙.如果当前可用资源不能满足当前任务,则采用Backfilling策略,对该任务所需资源进行预留,并跳到下一个任务执行.如果当前资源满足当前任务,则执行提出的空闲资源调度(IRS)策略,尽量安排空闲资源来执行该任务.仿真结果表明:与当前云工作流调度技术相比,本文调度策略具有更低的任务完成时间与任务执行延迟,以及更高的资源利用率. 展开更多
关键词 云计算 工作流调度 backfilling策略 空闲资源调度 任务执行延迟
下载PDF
Roughness characterization and shearing dislocation failure for rock-backfill interface
8
作者 Meifeng Cai Zhilou Feng +3 位作者 Qifeng Guo Xiong Yin Minghui Ma Xun Xi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1167-1176,共10页
Shearing dislocation is a common failure type for rock–backfill interfaces because of backfill sedimentation and rock strata movement in backfill mining goaf.This paper designed a test method for rock–backfill shear... Shearing dislocation is a common failure type for rock–backfill interfaces because of backfill sedimentation and rock strata movement in backfill mining goaf.This paper designed a test method for rock–backfill shearing dislocation.Using digital image techno-logy and three-dimensional(3D)laser morphology scanning techniques,a set of 3D models with rough joint surfaces was established.Further,the mechanical behavior of rock–backfill shearing dislocation was investigated using a direct shear test.The effects of interface roughness on the shear–displacement curve and failure characteristics of rock–backfill specimens were considered.The 3D fractal dimen-sion,profile line joint roughness coefficient(JRC),profile line two-dimensional fractal dimension,and the surface curvature of the frac-tures were obtained.The correlation characterization of surface roughness was then analyzed,and the shear strength could be measured and calculated using JRC.The results showed the following:there were three failure threshold value points in rock–backfill shearing dis-location:30%–50%displacement before the peak,70%–90%displacement before the peak,and 100%displacement before the peak to post-peak,which could be a sign for rock–backfill shearing dislocation failure.The surface JRC could be used to judge the rock–backfill shearing dislocation failure,including post-peak sliding,uniform variations,and gradient change,corresponding to rock–backfill disloca-tion failure on the field site.The research reveals the damage mechanism for rock–backfill complexes based on the free joint surface,fills the gap of existing shearing theoretical systems for isomerism complexes,and provides a theoretical basis for the prevention and control of possible disasters in backfill mining. 展开更多
关键词 rock–backfill ROUGHNESS correlation characterization shearing dislocation interface failure
下载PDF
Reinforcing effects of polypropylene on energy absorption and fracturing of cement-based tailings backfill under impact loading
9
作者 Jiajian Li Shuai Cao Erol Yilmaz 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期650-664,共15页
Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits su... Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits susceptibility to dynamic events,such as impact ground pressure and blast vibrations.This paper investigates the energy and crack distribution behavior of FRCTB under dynamic impact,considering the height/diameter(H/D)effect.Split Hopkinson pressure bar,industrial computed tomography scan,and scanning electron microscopy(SEM)experiments were carried out on six types of FRCTB.Laboratory outcomes confirmed fiber aggregation at the bottom of specimens.When H/D was less than 0.8,the proportion of PP fibers distributed along theθangle direction of80°-90°increased.For the total energy,all samples presented similar energy absorption,reflectance,and transmittance.However,a rise in H/D may cause a rise in the energy absorption rate of FRCTB during the peak phase.A positive correlation existed between the average strain rate and absorbed energy per unit volume.The increase in H/D resulted in a decreased crack volume fraction of FRCTB.When the H/D was greater than or equal to 0.7,the maximum crack volume fraction of FRCTB was observed close to the incidence plane.Radial cracks were present only in the FRCTB with an H/D ratio of 0.5.Samples with H/D ratios of 0.5 and 0.6 showed similar distributions of weakly and heavily damaged areas.PP fibers can limit the emergence and expansion of cracks by influencing their path.SEM observations revealed considerable differences in the bonding strengths between fibers and the FRCTB.Fibers that adhered particularly well to the substrate were attracted together with the hydration products adhering to surfaces.These results show that FRCTB is promising as a sustainable and green backfill for determining the design properties of mining with backfill. 展开更多
关键词 cement-based tailings fiber-reinforced backfills FRACTURE energy absorption impact loading
下载PDF
Using cemented paste backfill to tackle the phosphogypsum stockpile in China:A down-to-earth technology with new vitalities in pollutant retention and CO_(2) abatement
10
作者 Yikai Liu Yunmin Wang Qiusong Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1480-1499,共20页
Phosphogypsum(PG),a hard-to-dissipate by-product of the phosphorus fertilizer production industry,places strain on the biogeochemical cycles and ecosystem functions of storage sites.This pervasive problem is already w... Phosphogypsum(PG),a hard-to-dissipate by-product of the phosphorus fertilizer production industry,places strain on the biogeochemical cycles and ecosystem functions of storage sites.This pervasive problem is already widespread worldwide and requires careful stewardship.In this study,we review the presence of potentially toxic elements(PTEs)in PG and describe their associations with soil properties,anthropogenic activities,and surrounding organisms.Then,we review different ex-/in-situ solutions for promoting the sustainable management of PG,with an emphasis on in-situ cemented paste backfill,which offers a cost-effective and highly scalable opportunity to advance the value-added recovery of PG.However,concerns related to the PTEs'retention capacity and long-term effectiveness limit the implementation of this strategy.Furthermore,given that the large-scale demand for ordinary Portland cement from this conventional option has resulted in significant CO_(2) emissions,the technology has recently undergone additional scrutiny to meet the climate mitigation ambition of the Paris Agreement and China's Carbon Neutrality Economy.Therefore,we discuss the ways by which we can integrate innovative strategies,including supplementary cementitious materials,alternative binder solutions,CO_(2) mineralization,CO_(2) curing,and optimization of the supply chain for the profitability and sustainability of PG remediation.However,to maximize the co-benefits in environmental,social,and economic,future research must bridge the gap between the feasibility of expanding these advanced pathways and the multidisciplinary needs. 展开更多
关键词 cemented paste backfill PHOSPHOGYPSUM carbon dioxide mitigation potentially toxic elements solidification and stabilization
下载PDF
Paraffin–CaCl_(2)·6H_(2)O dosage effects on the strength and heat transfer characteristics of cemented tailings backfill
11
作者 Hai Li Aibing Jin +2 位作者 Shuaijun Chen Yiqing Zhao You Ju 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期60-70,共11页
The challenge of high temperatures in deep mining remains harmful to the health of workers and their production efficiency The addition of phase change materials (PCMs) to filling slurry and the use of the cold storag... The challenge of high temperatures in deep mining remains harmful to the health of workers and their production efficiency The addition of phase change materials (PCMs) to filling slurry and the use of the cold storage function of these materials to reduce downhole temperatures is an effective approach to alleviate the aforementioned problem.Paraffin–CaCl_(2)·6H_(2)O composite PCM was prepared in the laboratory.The composition,phase change latent heat,thermal conductivity,and cemented tailing backfill (CTB) compressive strength of the new material were studied.The heat transfer characteristics and endothermic effect of the PCM were simulated using Fluent software.The results showed the following:(1) The new paraffin–CaCl_(2)·6H_(2)O composite PCM improved the thermal conductivity of native paraffin while avoiding the water solubility of CaCl_(2)·6H_(2)O.(2) The calculation formula of the thermal conductivity of CaCl_(2)·6H_(2)O combined with paraffin was deduced,and the reasons were explained in principle.(3) The“enthalpy–mass scale model”was applied to calculate the phase change latent heat of nonreactive composite PCMs.(4)The addition of the paraffin–CaCl_(2)·6H_(2)O composite PCM reduced the CTB strength but increased its heat absorption capacity.This research can give a theoretical foundation for the use of heat storage backfill in green mines. 展开更多
关键词 paraffin–CaCl_(2)·6H_(2)O heat transfer simulation heat calculation phase change material-based backfill latent heat of formula
下载PDF
Innuendoes of Sterilisation Drilling in Surface Mining Operations—A Case Study
12
作者 Richard Gyebuni Festus Kunkyin-Saadaari Isaac Ekow Anaman 《International Journal of Geosciences》 CAS 2024年第5期458-477,共20页
Surface mining operations play a crucial role in meeting the world’s increasing demand for mineral resources for the advancement of technology and debauched expansion of economies. The search for and exploitation of ... Surface mining operations play a crucial role in meeting the world’s increasing demand for mineral resources for the advancement of technology and debauched expansion of economies. The search for and exploitation of these mineral resources are therefore important for the sustainability of the mineral extraction industry. To this end, efficient mine planning must incorporate sterilisation drilling and effective waste rock management principles in the search and exploitation of these minerals. In this article, sterilisation drilling is being reviewed vis-a-vis the establishment of waste and tailings dump locations, backfilling of open pit excavations and mine closure giving critical attention to the minerals and mining laws of Ghana. Subsequently, a detailed case study of a surface mining operation that successfully incorporated sterilisation drilling in determining waste dump location in its mine planning process has been presented in this study. The findings indicate that the proposed waste dump location could present a potential mining prospect in the future based on enhanced milling capacity/technology and improved mineral commodity price;underscoring the significance of sterilization drilling in the sustainability of the mining industry. 展开更多
关键词 STERILISATION Exploration backfilling Waste Dump Cutoff Grade
下载PDF
Cemented backfilling performance of yellow phosphorus slag 被引量:17
13
作者 Jia-sheng Chen Bin Zhao +2 位作者 Xin-min Wang Qin-li Zhang Li Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第1期121-126,共6页
The experiments on the cemented backfilling perfbrmance of yellow phosphorus slag, including physical-mechanical properties, chemical compositions, optimized proportion, and cementation mechanisms, were carried out to... The experiments on the cemented backfilling perfbrmance of yellow phosphorus slag, including physical-mechanical properties, chemical compositions, optimized proportion, and cementation mechanisms, were carried out to make good use of yellow phosphorus slag as well as tackle with environment problems, safety problems, geological hazards, and high-cost issues during mining in Kaiyang Phosphorus Mine Group, Guizhou. The results show that yellow phosphorus slag can be used as the cement substitute for potential coagulation property. Quicklime, hydrated lime, and other alkaline substances can eliminate the high residual phosphorus to improve the initial strength of backfilling body. The recommended proportions (mass ratio) are 1:1 (yellow phosphorus slag:phosphorous gypsum), 1:4:10 (Portland cement:yellow phosphorus slag:phosphorous gypsum), and 1:4:10 (ultra fine powder:yellow phosphorus slag:phosphorous gypsum) with 5wt% of hydrated lime addition, 60wt% of solid materials, no fly ash addition, and good rheological properties. The hydration reaction involves hydration stage, solidifying stage, and strength stage with Ca(OH)2 as the activating agent. The reaction rates of yellow phosphorus slag, Portland cement, and ultrafine powder hydration with the increase of microstructure stability and initial strength. 展开更多
关键词 SLAG phosphorous backfilling rheological properties CEMENTATION
下载PDF
CO2 sequestration characteristics in the cementitious material based on gangue backfilling mining method 被引量:8
14
作者 Peng Wang Xianbiao Mao Shen-En Chen 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第5期721-729,共9页
The increasing anthropogenic CO2 emission and global warming has challenged the China and other countries to seek new and better ways to meet the world’s increasing need for energy while reducing greenhouse gas emiss... The increasing anthropogenic CO2 emission and global warming has challenged the China and other countries to seek new and better ways to meet the world’s increasing need for energy while reducing greenhouse gas emissions.The overall proposition of this research is to develop a brand-new CO2 physical and chemical sequestration method by using solid waste of coal mining and cementitious material which are widely used for goaf backfilling in coal mining.This research developed a new testing system(constant temperature pressurized reaction chamber(CTPRC))to study the effects of different initial parameters on mineral carbonation such as different initial water-binder ratio,initial sample porosity and initial carbon dioxide pressure.The experimental results show that the CO2 consumption ratio is 15%,10%and 7%higher with relatively high initial water-binder ratio,initial sample porosity and initial CO2 pressure within 48 h.In addition,some physical and chemical evidence was found through the electron microscope scanning and XRD test to further explain the above test results.This proposed research will provide critical parameters for optimizing CO2 sequestration capacity in this cementitious backfilling material with forming agent. 展开更多
关键词 GANGUE backfilling GOAF Carbon dioxide SEQUESTRATION MINERAL CARBONATION Cementious material
下载PDF
Innovative backfilling longwall panel layout for better subsidence control effect-separating adjacent subcritical panels with pillars 被引量:21
15
作者 Jialin Xu Dayang Xuan Changchun He 《International Journal of Coal Science & Technology》 EI CAS 2014年第3期297-305,共9页
In recent years,field trials of non-pillar longwall mining using complete backfill have been implemented successively in the Chinese coal mining industry.The objective of this paper is to get a scientific understandin... In recent years,field trials of non-pillar longwall mining using complete backfill have been implemented successively in the Chinese coal mining industry.The objective of this paper is to get a scientific understanding of surface subsidence control effect using such techniques.It begins with a brief overview on complete backfill methods primarily used in China,followed by an analysis of collected subsidence factors under mining with complete backfill.It is concluded that non-pillar longwall panel layout cannot protect surface structures against damages at a relatively large mining height,even though complete backfill is conducted.In such cases,separated longwall panel layout should be applied,i.e.,panel width should be subcritical and stable coal pillars should be left between the adjacent panels.The proposed method takes the principles of subcritical extraction and partial extraction;in conjunction with gob backfilling,surface subsidence can be effectively mitigated,thus protecting surface buildings against mining-induced damage.A general design principle and method of separated panel layout have also been proposed. 展开更多
关键词 Mining with backfill Longwall mining Surface subsidence control Suberitical panel width Separatedpillar
下载PDF
Numerical investigation into the effect of backfilling on coal pillar strength in highwall mining 被引量:9
16
作者 Mo S. Canbulat I. +3 位作者 Zhang C. Oh J. Shen B. Hagan P. 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第2期281-286,共6页
This paper attempts to quantify the effect of backfilling on pillar strength in highwall mining using numerical modelling. Calibration against the new empirical strength formula for highwall mining was conducted to ob... This paper attempts to quantify the effect of backfilling on pillar strength in highwall mining using numerical modelling. Calibration against the new empirical strength formula for highwall mining was conducted to obtain the material parameters used in the numerical modelling. With the obtained coal strength parameters, three sets of backfill properties were investigated. The results reveal that the behavior of pillars varies with the type and amount of backfill as well as the pillar width to mining height ratio(w/h). In case of cohesive backfill, generally 75% backfill shows a significant increase in peak strength, and the increase in peak strength is more pronounced for the pillars having lower w/h ratios. In case of noncohesive backfill, the changes in both the peak and residual strengths with up to 92% backfill are negligible while the residual strength constantly increases after reaching the peak strength only when 100%backfill is placed. Based on the modelling results, different backfilling strategies should be considered on a case by case basis depending on the type of backfill available and desired pillar dimension. 展开更多
关键词 Highwall MINING BACKFILL COAL PILLAR Strength Numerical modelling
下载PDF
Mining pressure monitoring and analysis in fully mechanized backfilling coal mining face-A case study in Zhai Zhen Coal Mine 被引量:14
17
作者 张强 张吉雄 +2 位作者 康涛 孙强 李伟康 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1965-1972,共8页
Fully mechanized solid backfill mining(FMSBM) technology adopts dense backfill body to support the roof. Based on the distinguishing characteristics and mine pressure control principle in this technology, the basic pr... Fully mechanized solid backfill mining(FMSBM) technology adopts dense backfill body to support the roof. Based on the distinguishing characteristics and mine pressure control principle in this technology, the basic principles and methods for mining pressure monitoring were analyzed and established. And the characteristics of overburden strata movement were analyzed by monitoring the support resistance of hydraulic support, the dynamic subsidence of immediate roof, the stress of backfill body, the front abutment pressure, and the mass ratio of cut coal to backfilled materials. On-site strata behavior measurements of 7403 W solid backfilling working face in Zhai Zhen Coal Mine show that the backfill body can effectively support the overburden load, obviously control the overburden strata movement, and weaken the strata behaviors distinctly. Specific performances are as follows. The support resistance decreases obviously; the dynamic subsidence of immediate roof keeps consistent to the variation of backfill body stress, and tends to be stable after the face retreating to 120-150 m away from the cut. The peak value of front abutment pressure arises at 5-12 m before the operating face, and mass ratio is greater than the designed value of 1.15, which effectively ensures the control of strata movement. The research results are bases for intensively studying basic theories of solid backfill mining strata behaviors and its control, and provide theoretical guidance for engineering design in FMSBM. 展开更多
关键词 fully mechanized solid backfill mining(FMSBM) strata movement strata behavior mining pressure monitoring
下载PDF
Subsidence control and farmland conservation by solid backfilling mining technology 被引量:6
18
作者 GUO Guang-li1, 2, FENG Wen-kai3, ZHA Jian-feng1, 2, 3, LIU Yuan-xu1, 2, WANG Qiang1, 2 1. Key Laboratory for Land Environment and Disaster Monitoring of the State Bureau of Surveying and Mapping, China University of Mining and Technology, Xuzhou 221116, China 2. Jiangsu Key Laboratory of Resources and Environmental Information Engineering, China University of Mining and Technology, Xuzhou 221116, China 3. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China 《中国有色金属学会会刊:英文版》 CSCD 2011年第S3期665-669,共5页
Solid backfilling mining technology, which decreases the height of fissure zone and caving zone, and alleviates the subsidence, is a new technology for farmland conservation. Based on the situation analysis of farmlan... Solid backfilling mining technology, which decreases the height of fissure zone and caving zone, and alleviates the subsidence, is a new technology for farmland conservation. Based on the situation analysis of farmland destruction in mining area, three ways for farmland protection were proposed. In order to improve the feasibility of this technology, the limited filling materials should be used to increase resources recovery ratio, and then the surplus materials could be backfilled into goaf. An index, namely farmland conservation ability, was put forward to optimize the ways for farmland conservation. At last, the Wanbei coal mine was taken as a case for farmland conservation. It was shown that 3240 t dull coal was substituted and 52 hm2 farmland was conserved by solid backfilling mining in this coal mine. 展开更多
关键词 solid backfilling FARMLAND conservation MINING SUBSIDENCE EQUIVALENT MINING HEIGHT
下载PDF
A roof model and its application in solid backfilling mining 被引量:4
19
作者 Ju Feng Huang Peng +2 位作者 Guo Shuai Xiao Meng Lan Lixin 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第1期139-143,共5页
Through changing the axial load on backfilling material compaction test to reflect different overlying strata pressure on backfilling material, the stress-strain relations in the compaction process of backfilling mate... Through changing the axial load on backfilling material compaction test to reflect different overlying strata pressure on backfilling material, the stress-strain relations in the compaction process of backfilling material under the geological condition can be obtained. Based on the characteristic of overlying strata movement in backfill mining, a model of roof thin plate is established. By introducing the stress-strain relation in compaction process into the model and using RIZT method to analyze the bending deformation of roof, the bending deflection and stress distribution can be obtained. The results show that the maximum roof subsidence and maximum tensile stress occurring at the center are 255 mm and5 MPa, respectively. Tensile fracture of roof under the geological condition of Dongping Mine did not occur. The dynamic measurement results of roof in Dongping Mine verify the theoretical result from the aforementioned model, thereby suggesting the roof mechanical model is reliable. The roof thin plate model based on the compaction characteristic of backfilling material in this study is of importance to research on backfill mining theories and application of backfilling material characteristics. 展开更多
关键词 Backfill mining backfilling material Compaction characteristic Thin plate model
下载PDF
Mining subsidence control by solid backfilling under buildings 被引量:3
20
作者 ZHA Jian-feng1, 2, 3, GUO Guang-li1, 2, FENG Wen-kai3, WANG Qiang1, 2 1. Key Laboratory for Land Environment and Disaster Monitoring of the State Bureau of Surveying and Mapping, China University of Mining and Technology, Xuzhou 221116, China 2. Jiangsu Key Laboratory of Resources and Environmental Information Engineering, China University of Mining and Technology, Xuzhou 221116, China 3. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China 《中国有色金属学会会刊:英文版》 CSCD 2011年第S3期670-674,共5页
Solid backfilling mining can reduce the buildings' damage caused by mining greatly. The reduction of subsidence value, the slow advancing speed and the subsidence caused by backfilling body compaction are the main... Solid backfilling mining can reduce the buildings' damage caused by mining greatly. The reduction of subsidence value, the slow advancing speed and the subsidence caused by backfilling body compaction are the main reasons that solid backfilling mining velocity decreases significantly. Based on the research of mechanism, some principles on subsidence control of solid backfilling mining under buildings were proposed. The equivalent mining height was designed according to the fortification criteria of buildings and their attachment structures, which enables the ground movement and deformation caused by mining to be less than the corresponding fortification criteria. 展开更多
关键词 SOLID backfilling MINING SUBSIDENCE CONTROL MINING under BUILDINGS
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部