In YCbCr colorspace, a method is proposed to reconstruct the background and extract moving objects based on the Gaussian model of chroma components. Background model is updated according to changes of chroma component...In YCbCr colorspace, a method is proposed to reconstruct the background and extract moving objects based on the Gaussian model of chroma components. Background model is updated according to changes of chroma components. In order to eliminate the disturbance of shadow, a shadow detecting principle is proposed in YCbCr colorspace. A Kalman filter is introduced to estimate objects' positions in the image and then the pedestrian is tracked according to its information of shape. Experiments show that the background reconstruction and updating are successful, object extraction and shadow suppression are satisfactory, and real-time and reliable tracking is realized.展开更多
Moving object detection is one of the challenging problems in video monitoring systems, especially when the illumination changes and shadow exists. Amethod for real-time moving object detection is described. Anew back...Moving object detection is one of the challenging problems in video monitoring systems, especially when the illumination changes and shadow exists. Amethod for real-time moving object detection is described. Anew background model is proposed to handle the illumination varition problem. With optical flow technology and background subtraction, a moving object is extracted quickly and accurately. An effective shadow elimination algorithm based on color features is used to refine the moving obj ects. Experimental results demonstrate that the proposed method can update the background exactly and quickly along with the varition of illumination, and the shadow can be eliminated effectively. The proposed algorithm is a real-time one which the foundation for further object recognition and understanding of video mum'toting systems.展开更多
Background modeling is a technique for extracting moving objects in video frames. This technique can be used in ma-chine vision applications, such as video frame compression and monitoring. To model the background in ...Background modeling is a technique for extracting moving objects in video frames. This technique can be used in ma-chine vision applications, such as video frame compression and monitoring. To model the background in video frames, initially, a model of scene background is constructed, then the current frame is subtracted from the background. Even-tually, the difference determines the moving objects. This paper evaluates a number of existing background modeling techniques in term of accuracy, speed and memory requirement.展开更多
A dynamic learning rate Gaussian mixture model(GMM)algorithm is proposed to deal with the problem of slow adaption of GMM in the case of moving object detection in the outdoor surveillance,especially in the presence...A dynamic learning rate Gaussian mixture model(GMM)algorithm is proposed to deal with the problem of slow adaption of GMM in the case of moving object detection in the outdoor surveillance,especially in the presence of sudden illumination changes.The GMM is mostly used for detecting objects in complex scenes for intelligent monitoring systems.To solve this problem,a mixture Gaussian model has been built for each pixel in the video frame,and according to the scene change from the frame difference,the learning rate of GMM can be dynamically adjusted.The experiments show that the proposed method gives good results with an adaptive GMM learning rate when we compare it with GMM method with a fixed learning rate.The method was tested on a certain dataset,and tests in the case of sudden natural light changes show that our method has a better accuracy and lower false alarm rate.展开更多
In order to detect the object in video efficiently, an automatic and real time video segmentation algorithm based on background model and color clustering is proposed. This algorithm consists of four phases: backgroun...In order to detect the object in video efficiently, an automatic and real time video segmentation algorithm based on background model and color clustering is proposed. This algorithm consists of four phases: background restoration, moving objects extract, moving objects region clustering and post processing. The threshold of the background restoration is not given in advanced. It can be gotten automatically. And a new object region cluster algorithm based on background model and color clustering to remove significance noise is proposed. An efficient method of eliminating shadow is also used. This approach was compared with other methods on pixel error ratio. The experiment result indicates the algorithm is correct and efficient.展开更多
In video surveillance, there are many interference factors such as target changes, complex scenes, and target deformation in the moving object tracking. In order to resolve this issue, based on the comparative analysi...In video surveillance, there are many interference factors such as target changes, complex scenes, and target deformation in the moving object tracking. In order to resolve this issue, based on the comparative analysis of several common moving object detection methods, a moving object detection and recognition algorithm combined frame difference with background subtraction is presented in this paper. In the algorithm, we first calculate the average of the values of the gray of the continuous multi-frame image in the dynamic image, and then get background image obtained by the statistical average of the continuous image sequence, that is, the continuous interception of the N-frame images are summed, and find the average. In this case, weight of object information has been increasing, and also restrains the static background. Eventually the motion detection image contains both the target contour and more target information of the target contour point from the background image, so as to achieve separating the moving target from the image. The simulation results show the effectiveness of the proposed algorithm.展开更多
Moving object extraction and classification are important problems in automated video surveillance systems. A background model based on region segmentation is proposed. An adaptive single Gaussian background model is ...Moving object extraction and classification are important problems in automated video surveillance systems. A background model based on region segmentation is proposed. An adaptive single Gaussian background model is used in the stable region with gradual changes, and a nonparametric model is used in the variable region with jumping changes. A generalized agglomerative scheme is used to merge the pixels in the variable region and fill in the small interspaces. A two-threshold sequential algorithmic scheme is used to group the background samples of the variable region into distinct Gaussian distributions to accelerate the kernel density computation speed of the nonparametric model. In the feature-based object classification phase, the surveillance scene is first partitioned according to the road boundaries of different traffic directions and then re-segmented according to their scene localities. The method improves the discriminability of the features in each partition. AdaBoost method is applied to evaluate the relative importance of the features in each partition respectively and distinguish whether an object is a vehicle, a single human, a human group, or a bike. Experimental results show that the proposed method achieves higher performance in comparison with the existing method.展开更多
Moving object detection including background subtraction and morphological processing is a critical research topic for video surveillance because of its high computational loading and power consumption. This paper pro...Moving object detection including background subtraction and morphological processing is a critical research topic for video surveillance because of its high computational loading and power consumption. This paper proposes a hardware design to accelerate the computation of background subtraction with low power consumption. A real-time background subtraction method is designed with a frame-buffer scheme and function partition to improve throughput, and implemented using Verilog HDL on FPGA. The design parallelizes the computations of background update and subtraction with a seven-stage pipeline. A stripe-based morphological processing and accounting for the completion of detected objects is devised. Simulation results for videos of VGA resolutions on a low-end FPGA device show 368 fps throughput for only the real-time background subtraction module, and 51 fps for the whole system, including off-chip memory access. Real-time efficiency with low power consumption and low resource utilization is thus demonstrated.展开更多
An approach to detection of moving objects in video sequences, with application to video surveillance is presented. The algorithm combines two kinds of change points, which are detected from the region-based frame dif...An approach to detection of moving objects in video sequences, with application to video surveillance is presented. The algorithm combines two kinds of change points, which are detected from the region-based frame difference and adjusted background subtraction. An adaptive threshold technique is employed to automatically choose the threshold value to segment the moving objects from the still background. And experiment results show that the algorithm is effective and efficient in practical situations. Furthermore, the algorithm is robust to the effects of the changing of lighting condition and can be applied for video surveillance system.展开更多
基金This project is supported by Program for New Century Excellent Talents in University, China(No.NCET-04-0545)National Defense Science Foundation of China(No.51416070104JW0404)
文摘In YCbCr colorspace, a method is proposed to reconstruct the background and extract moving objects based on the Gaussian model of chroma components. Background model is updated according to changes of chroma components. In order to eliminate the disturbance of shadow, a shadow detecting principle is proposed in YCbCr colorspace. A Kalman filter is introduced to estimate objects' positions in the image and then the pedestrian is tracked according to its information of shape. Experiments show that the background reconstruction and updating are successful, object extraction and shadow suppression are satisfactory, and real-time and reliable tracking is realized.
基金This project was supported by the foundation of the Visual and Auditory Information Processing Laboratory of BeijingUniversity of China (0306) and the National Science Foundation of China (60374031).
文摘Moving object detection is one of the challenging problems in video monitoring systems, especially when the illumination changes and shadow exists. Amethod for real-time moving object detection is described. Anew background model is proposed to handle the illumination varition problem. With optical flow technology and background subtraction, a moving object is extracted quickly and accurately. An effective shadow elimination algorithm based on color features is used to refine the moving obj ects. Experimental results demonstrate that the proposed method can update the background exactly and quickly along with the varition of illumination, and the shadow can be eliminated effectively. The proposed algorithm is a real-time one which the foundation for further object recognition and understanding of video mum'toting systems.
文摘Background modeling is a technique for extracting moving objects in video frames. This technique can be used in ma-chine vision applications, such as video frame compression and monitoring. To model the background in video frames, initially, a model of scene background is constructed, then the current frame is subtracted from the background. Even-tually, the difference determines the moving objects. This paper evaluates a number of existing background modeling techniques in term of accuracy, speed and memory requirement.
文摘A dynamic learning rate Gaussian mixture model(GMM)algorithm is proposed to deal with the problem of slow adaption of GMM in the case of moving object detection in the outdoor surveillance,especially in the presence of sudden illumination changes.The GMM is mostly used for detecting objects in complex scenes for intelligent monitoring systems.To solve this problem,a mixture Gaussian model has been built for each pixel in the video frame,and according to the scene change from the frame difference,the learning rate of GMM can be dynamically adjusted.The experiments show that the proposed method gives good results with an adaptive GMM learning rate when we compare it with GMM method with a fixed learning rate.The method was tested on a certain dataset,and tests in the case of sudden natural light changes show that our method has a better accuracy and lower false alarm rate.
基金the Ministerial Level Advanced Research Foundation(10405033)
文摘In order to detect the object in video efficiently, an automatic and real time video segmentation algorithm based on background model and color clustering is proposed. This algorithm consists of four phases: background restoration, moving objects extract, moving objects region clustering and post processing. The threshold of the background restoration is not given in advanced. It can be gotten automatically. And a new object region cluster algorithm based on background model and color clustering to remove significance noise is proposed. An efficient method of eliminating shadow is also used. This approach was compared with other methods on pixel error ratio. The experiment result indicates the algorithm is correct and efficient.
文摘In video surveillance, there are many interference factors such as target changes, complex scenes, and target deformation in the moving object tracking. In order to resolve this issue, based on the comparative analysis of several common moving object detection methods, a moving object detection and recognition algorithm combined frame difference with background subtraction is presented in this paper. In the algorithm, we first calculate the average of the values of the gray of the continuous multi-frame image in the dynamic image, and then get background image obtained by the statistical average of the continuous image sequence, that is, the continuous interception of the N-frame images are summed, and find the average. In this case, weight of object information has been increasing, and also restrains the static background. Eventually the motion detection image contains both the target contour and more target information of the target contour point from the background image, so as to achieve separating the moving target from the image. The simulation results show the effectiveness of the proposed algorithm.
基金supported by the Science and Technology Program of Zhejiang Province of China(2005C11001-02).
文摘Moving object extraction and classification are important problems in automated video surveillance systems. A background model based on region segmentation is proposed. An adaptive single Gaussian background model is used in the stable region with gradual changes, and a nonparametric model is used in the variable region with jumping changes. A generalized agglomerative scheme is used to merge the pixels in the variable region and fill in the small interspaces. A two-threshold sequential algorithmic scheme is used to group the background samples of the variable region into distinct Gaussian distributions to accelerate the kernel density computation speed of the nonparametric model. In the feature-based object classification phase, the surveillance scene is first partitioned according to the road boundaries of different traffic directions and then re-segmented according to their scene localities. The method improves the discriminability of the features in each partition. AdaBoost method is applied to evaluate the relative importance of the features in each partition respectively and distinguish whether an object is a vehicle, a single human, a human group, or a bike. Experimental results show that the proposed method achieves higher performance in comparison with the existing method.
文摘Moving object detection including background subtraction and morphological processing is a critical research topic for video surveillance because of its high computational loading and power consumption. This paper proposes a hardware design to accelerate the computation of background subtraction with low power consumption. A real-time background subtraction method is designed with a frame-buffer scheme and function partition to improve throughput, and implemented using Verilog HDL on FPGA. The design parallelizes the computations of background update and subtraction with a seven-stage pipeline. A stripe-based morphological processing and accounting for the completion of detected objects is devised. Simulation results for videos of VGA resolutions on a low-end FPGA device show 368 fps throughput for only the real-time background subtraction module, and 51 fps for the whole system, including off-chip memory access. Real-time efficiency with low power consumption and low resource utilization is thus demonstrated.
文摘An approach to detection of moving objects in video sequences, with application to video surveillance is presented. The algorithm combines two kinds of change points, which are detected from the region-based frame difference and adjusted background subtraction. An adaptive threshold technique is employed to automatically choose the threshold value to segment the moving objects from the still background. And experiment results show that the algorithm is effective and efficient in practical situations. Furthermore, the algorithm is robust to the effects of the changing of lighting condition and can be applied for video surveillance system.