A novel backoff algorithm in CSMA/CA-based medium access control (MAC) protocols for clustered sensor networks was proposed. The algorithm requires that all sensor nodes have the same value of contention window (CW) i...A novel backoff algorithm in CSMA/CA-based medium access control (MAC) protocols for clustered sensor networks was proposed. The algorithm requires that all sensor nodes have the same value of contention window (CW) in a cluster, which is revealed by formulating resource allocation as a network utility maximization problem. Then, by maximizing the total network utility with constrains of minimizing collision probability, the optimal value of CW (Wopt) can be computed according to the number of sensor nodes. The new backoff algorithm uses the common optimal value Wopt and leads to fewer collisions than binary exponential backoff algorithm. The simulation results show that the proposed algorithm outperforms standard 802.11 DCF and S-MAC in average collision times, packet delay, total energy consumption, and system throughput.展开更多
A Mobile Ad Hoc Network (MANET) is a collection of mobile nodes that can communicate directly over wireless media, without the need for a preconfigured infrastructure. Several approaches have been suggested to improve...A Mobile Ad Hoc Network (MANET) is a collection of mobile nodes that can communicate directly over wireless media, without the need for a preconfigured infrastructure. Several approaches have been suggested to improve Quality of Service (QoS) in IEEE 802.11-based MANETs through modifying some of the IEEE 802.11 Medium Access Control (MAC) algorithms, such as the backoff algorithm that is used to control the packets collision aftermath. In this work, an adaptive IEEE 802.11 backoff algorithm to improve QoS is de-veloped and tested in simulations as well as in testbed implementation. While the Binary Exponential Backoff (BEB) algorithm deployed by IEEE 802.11 reacts based on individual packet transmit trials, the new algo-rithm takes the history of successive packet transmit trials into account to provide a better QoS performance. The new algorithm has been tested against the legacy IEEE 802.11 through simulations using QualNet and a Linux-based testbed comprising a number of stations. The performed tests have shown significant im-provements in performance, with up to 33.51% improvement in delay and 7.36% improvement in packet delivery fraction compared to the original IEEE 802.11.展开更多
Ad hoc网络是一种特殊的对等式网络。传统的基于固定的或有中心的网络的协议不能满足 Ad hoc网络的需要。首先研究了 Ad hoc网络信道接入协议要考虑的隐终端问题和暴露终端问题 ,并给出了一种可能的双信道解决方案。在分析了现有的两种...Ad hoc网络是一种特殊的对等式网络。传统的基于固定的或有中心的网络的协议不能满足 Ad hoc网络的需要。首先研究了 Ad hoc网络信道接入协议要考虑的隐终端问题和暴露终端问题 ,并给出了一种可能的双信道解决方案。在分析了现有的两种退避算法后 ,提出使用退避计数器广播加信道争用估计技术来消除不公平现象。在这些结果的基础上 ,提出了一种新的信道接入协议。展开更多
基金Project(60772088) supported by the National Natural Science Foundation of China
文摘A novel backoff algorithm in CSMA/CA-based medium access control (MAC) protocols for clustered sensor networks was proposed. The algorithm requires that all sensor nodes have the same value of contention window (CW) in a cluster, which is revealed by formulating resource allocation as a network utility maximization problem. Then, by maximizing the total network utility with constrains of minimizing collision probability, the optimal value of CW (Wopt) can be computed according to the number of sensor nodes. The new backoff algorithm uses the common optimal value Wopt and leads to fewer collisions than binary exponential backoff algorithm. The simulation results show that the proposed algorithm outperforms standard 802.11 DCF and S-MAC in average collision times, packet delay, total energy consumption, and system throughput.
文摘A Mobile Ad Hoc Network (MANET) is a collection of mobile nodes that can communicate directly over wireless media, without the need for a preconfigured infrastructure. Several approaches have been suggested to improve Quality of Service (QoS) in IEEE 802.11-based MANETs through modifying some of the IEEE 802.11 Medium Access Control (MAC) algorithms, such as the backoff algorithm that is used to control the packets collision aftermath. In this work, an adaptive IEEE 802.11 backoff algorithm to improve QoS is de-veloped and tested in simulations as well as in testbed implementation. While the Binary Exponential Backoff (BEB) algorithm deployed by IEEE 802.11 reacts based on individual packet transmit trials, the new algo-rithm takes the history of successive packet transmit trials into account to provide a better QoS performance. The new algorithm has been tested against the legacy IEEE 802.11 through simulations using QualNet and a Linux-based testbed comprising a number of stations. The performed tests have shown significant im-provements in performance, with up to 33.51% improvement in delay and 7.36% improvement in packet delivery fraction compared to the original IEEE 802.11.
文摘Ad hoc网络是一种特殊的对等式网络。传统的基于固定的或有中心的网络的协议不能满足 Ad hoc网络的需要。首先研究了 Ad hoc网络信道接入协议要考虑的隐终端问题和暴露终端问题 ,并给出了一种可能的双信道解决方案。在分析了现有的两种退避算法后 ,提出使用退避计数器广播加信道争用估计技术来消除不公平现象。在这些结果的基础上 ,提出了一种新的信道接入协议。