A novel multi-laser beams measuring system (MLBM) for high precision detection on displacement of flow fields based on laser backscatter was designed and studied. MLBM has many advantages, such as simple structure, ...A novel multi-laser beams measuring system (MLBM) for high precision detection on displacement of flow fields based on laser backscatter was designed and studied. MLBM has many advantages, such as simple structure, high stability, and no limitation of the monochromaticity of laser. By circumventing the strong influence of atmospheric backscattering on the high sensitivity of target echo detection, high precision detection on backscatter density of laser by signal processing was achieved. Furthermore, the signal densities of various distances were extracted by time sampling and precise frequency control of digital circuit. Finally, the MLBM system including devices integrated of emitting and reviving equipments and program was obtained. Detection experiments showed that our system has high precision and the measurement error could be controlled within 5% to 10%.展开更多
基金supported by National Natural Science Foundation of China under Grant No.60425101-1Fund for Innovative Research Groups of NSFC under Grant No.60721001
文摘A novel multi-laser beams measuring system (MLBM) for high precision detection on displacement of flow fields based on laser backscatter was designed and studied. MLBM has many advantages, such as simple structure, high stability, and no limitation of the monochromaticity of laser. By circumventing the strong influence of atmospheric backscattering on the high sensitivity of target echo detection, high precision detection on backscatter density of laser by signal processing was achieved. Furthermore, the signal densities of various distances were extracted by time sampling and precise frequency control of digital circuit. Finally, the MLBM system including devices integrated of emitting and reviving equipments and program was obtained. Detection experiments showed that our system has high precision and the measurement error could be controlled within 5% to 10%.