High-voltage light-emitting diodes (HV-LED) with backside reflector, including Ti305/SiO2 distributed Bragg reflector (DBR) or hybrid reflector combining DBR and Al or Ag metal layer, are investigated using Monte ...High-voltage light-emitting diodes (HV-LED) with backside reflector, including Ti305/SiO2 distributed Bragg reflector (DBR) or hybrid reflector combining DBR and Al or Ag metal layer, are investigated using Monte Carlo ray tracing method. The hybrid reflector leads to more enhancement of light-extraction efficiency (LEE). Moreover, the LEE can also be improved by redesigning the thicknesses of DBR. HV-LED with four redesigned DBR pairs (4-MDBR), and those with a hybrid reflector combining 4-MDBR and Al metal layer (4-MDBR-Al), are fabricated. Compared to 4-MDBR, the enhancement of light-output power induced by 4-MDBR-A1 is 4.6%, which is consistent with the simulated value of 4.9%.展开更多
基金supported by the Strategic Emerging Industry Special funds of Guangdong Province,China(Nos.2010A081002009,2011A081301004,2012A080302003)the Key Technologies R&D Program of Guangzhou City,China(No.2011Y5-00006)the Fundamental Research Funds for the Central Universities,China(Nos.2013ZM093,2013ZP0017)
文摘High-voltage light-emitting diodes (HV-LED) with backside reflector, including Ti305/SiO2 distributed Bragg reflector (DBR) or hybrid reflector combining DBR and Al or Ag metal layer, are investigated using Monte Carlo ray tracing method. The hybrid reflector leads to more enhancement of light-extraction efficiency (LEE). Moreover, the LEE can also be improved by redesigning the thicknesses of DBR. HV-LED with four redesigned DBR pairs (4-MDBR), and those with a hybrid reflector combining 4-MDBR and Al metal layer (4-MDBR-Al), are fabricated. Compared to 4-MDBR, the enhancement of light-output power induced by 4-MDBR-A1 is 4.6%, which is consistent with the simulated value of 4.9%.