This paper focuses on a Pareto cooperative differential game with a linear mean-field backward stochastic system and a quadratic form cost functional. Based on a weighted sum optimality method, the Pareto game is equi...This paper focuses on a Pareto cooperative differential game with a linear mean-field backward stochastic system and a quadratic form cost functional. Based on a weighted sum optimality method, the Pareto game is equivalently converted to an optimal control problem. In the first place,the feedback form of Pareto optimal strategy is derived by virtue of decoupling technology, which is represented by four Riccati equations, a mean-field forward stochastic differential equation(MF-FSDE),and a mean-field backward stochastic differential equation(MF-BSDE). In addition, the corresponding Pareto optimal solution is further obtained. Finally, the author solves a problem in mathematical finance to illustrate the application of the theoretical results.展开更多
In this paper we consider general coupled mean-field reflected forward-backward stochastic differential equations(FBSDEs),whose coefficients not only depend on the solution but also on the law of the solution.The firs...In this paper we consider general coupled mean-field reflected forward-backward stochastic differential equations(FBSDEs),whose coefficients not only depend on the solution but also on the law of the solution.The first part of the paper is devoted to the existence and the uniqueness of solutions for such general mean-field reflected backward stochastic differential equations(BSDEs)under Lipschitz conditions,and for the one-dimensional case a comparison theorem is studied.With the help of this comparison result,we prove the existence of the solution for our mean-field reflected forward-backward stochastic differential equation under continuity assumptions.It should be mentioned that,under appropriate assumptions,we prove the uniqueness of this solution as well as that of a comparison theorem for mean-field reflected FBSDEs in a non-trivial manner.展开更多
In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytical...In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytically derive a comparison theorem for them and for the continuous equilibrium consumption process. These continuous equilibrium consumption processes can be described by the solutions to this class of ABSVIE with jumps.Motivated by this, a class of dynamic risk measures induced by ABSVIEs with jumps are discussed.展开更多
This paper is concerned with the mixed H_2/H_∞ control problem for a new class of stochastic systems with exogenous disturbance signal.The most distinguishing feature,compared with the existing literatures,is that th...This paper is concerned with the mixed H_2/H_∞ control problem for a new class of stochastic systems with exogenous disturbance signal.The most distinguishing feature,compared with the existing literatures,is that the systems are described by linear backward stochastic differential equations(BSDEs).The solution to this problem is obtained completely and explicitly by using an approach which is based primarily on the completion-of-squares technique.Two equivalent expressions for the H_2/H_∞ control are presented.Contrary to forward deterministic and stochastic cases,the solution to the backward stochastic H_2/H_∞ control is no longer feedback of the current state;rather,it is feedback of the entire history of the state.展开更多
In this article, we study the multi-dimensional reflected backward stochastic differential equations. The existence and uniqueness result of the solution for this kind of equation is proved by the fixed point argument...In this article, we study the multi-dimensional reflected backward stochastic differential equations. The existence and uniqueness result of the solution for this kind of equation is proved by the fixed point argument where every element of the solution is forced to stay above the given stochastic process, i.e., multi-dimensional obstacle, respectively. We also give a kind of multi-dimensional comparison theorem for the reflected BSDE and then use it as the tool to prove an existence result for the multi-dimensional reflected BSDE where the coefficient is continuous and has linear growth.展开更多
In this paper, we present a brief survey on the updated theory of backward stochas-tic Volterra integral equations (BSVIEs, for short). BSVIEs are a natural generalization of backward stochastic diff erential equati...In this paper, we present a brief survey on the updated theory of backward stochas-tic Volterra integral equations (BSVIEs, for short). BSVIEs are a natural generalization of backward stochastic diff erential equations (BSDEs, for short). Some interesting motivations of studying BSVIEs are recalled. With proper solution concepts, it is possible to establish the corresponding well-posedness for BSVIEs. We also survey various comparison theorems for solutions to BSVIEs.展开更多
The existence and uniqueness of solutions to backward stochastic differential equations with jumps and with unbounded stopping time as terminal under the non_Lipschitz condition are obtained. The convergence of soluti...The existence and uniqueness of solutions to backward stochastic differential equations with jumps and with unbounded stopping time as terminal under the non_Lipschitz condition are obtained. The convergence of solutions and the continuous dependence of solutions on parameters are also derived. Then the probabilistic interpretation of solutions to some kinds of quasi_linear elliptic type integro_differential equations is obtained.展开更多
The article first studies the fully coupled Forward-Backward Stochastic Differential Equations (FBSDEs) with the continuous local martingale. The article is mainly divided into two parts. In the first part, it consi...The article first studies the fully coupled Forward-Backward Stochastic Differential Equations (FBSDEs) with the continuous local martingale. The article is mainly divided into two parts. In the first part, it considers Backward Stochastic Differential Equations (BSDEs) with the continuous local martingale. Then, on the basis of it, in the second part it considers the fully coupled FBSDEs with the continuous local martingale. It is proved that their solutions exist and are unique under the monotonicity conditions.展开更多
In this paper, we use the solutions of forward-backward stochastic differential equations to get the optimal control for backward stochastic linear quadratic optimal control problem. And we also give the linear feedba...In this paper, we use the solutions of forward-backward stochastic differential equations to get the optimal control for backward stochastic linear quadratic optimal control problem. And we also give the linear feedback regulator for the optimal control problem by using the solutions of a group of Riccati equations.展开更多
The comparison theorems of solutions for BSDEs in fully coupled forward-backward stochastic differential equations (FBSDEs) are studied in this paper, here in the fully coupled FBSDEs the forward SDEs are the same str...The comparison theorems of solutions for BSDEs in fully coupled forward-backward stochastic differential equations (FBSDEs) are studied in this paper, here in the fully coupled FBSDEs the forward SDEs are the same structure.展开更多
In this paper, we propose a new second order numerical scheme for solving backward stochastic differential equations with jumps with the generator linearly depending on . And we theoretically prove that the conv...In this paper, we propose a new second order numerical scheme for solving backward stochastic differential equations with jumps with the generator linearly depending on . And we theoretically prove that the convergence rates of them are of second order for solving and of first order for solving and in norm.展开更多
This paper is concerned with a class of uncertain backward stochastic differential equations (UBSDEs) driven by both an m-dimensional Brownian motion and a d-dimensional canonical process with uniform Lipschitzian c...This paper is concerned with a class of uncertain backward stochastic differential equations (UBSDEs) driven by both an m-dimensional Brownian motion and a d-dimensional canonical process with uniform Lipschitzian coefficients. Such equations can be useful in mod- elling hybrid systems, where the phenomena are simultaneously subjected to two kinds of un- certainties: randomness and uncertainty. The solutions of UBSDEs are the uncertain stochastic processes. Thus, the existence and uniqueness of solutions to UBSDEs with Lipschitzian coeffi- cients are proved.展开更多
An optimal control problem for a controlled backward stochastic partial differential equation in the abstract evolution form with a Bolza type performance functional is considered. The control domain is not assumed to...An optimal control problem for a controlled backward stochastic partial differential equation in the abstract evolution form with a Bolza type performance functional is considered. The control domain is not assumed to be convex, and all coefficients of the system are allowed to be random. A variational formula for the functional in a given control process direction is derived, by the Hamiltonian and associated adjoint system. As an application, a global stochastic maximum principle of Pontraygins type for the optimal controls is established.展开更多
In this article, we first introduce g-expectation via the solution of backward stochastic differential equation(BSDE in short) with non-Lipschitz coefficient, and give the properties of g-expectation, then we establ...In this article, we first introduce g-expectation via the solution of backward stochastic differential equation(BSDE in short) with non-Lipschitz coefficient, and give the properties of g-expectation, then we establish a general converse comparison theorem for backward stochastic differential equation with non-Lipschitz coefficient.展开更多
For Duffle-Epstein type Backward Stochastic Differential Equations, the comparison theorem is proved. Based on the comparison theorem, by monotone iterative technique, the existence of the minimal and maximal solution...For Duffle-Epstein type Backward Stochastic Differential Equations, the comparison theorem is proved. Based on the comparison theorem, by monotone iterative technique, the existence of the minimal and maximal solutions of the equations are proved.展开更多
The development of Backward Stochastic Differential Equation Theory is just a thing happened in the past years. Although its development and application is far behind Forward Stochastic Differential Equation, its wide...The development of Backward Stochastic Differential Equation Theory is just a thing happened in the past years. Although its development and application is far behind Forward Stochastic Differential Equation, its wide application prospect on financial mathematics gets more and more attention. The meaning of Backward Stochastic Differential Equation is that change a already-known final (usually uncertain) goal into a present certain answer to make a present resolution. But Insurance Pricing happens to know the final result, it' s certain that the result is uncertain, that is to say, to get out of danger or not. And then make present insurance price according to the future uncertain result. The Insurance Pricing just follows the meaning of Backward Stochastic Differential Equation. Insurance Pricing itself is also a research field sprang up in past scores of years, because insurance pricing is the indisputable core of insurance work, and gets quite a few researchers' attention. This article adopts backward stochastic differential equation theory and do research on problem about technology insurance pricing.展开更多
Motivated by a duopoly game problem,the authors study an optimal control problem where the system is driven by Brownian motion and Poisson point process and has elephant memory for the control variable and the state v...Motivated by a duopoly game problem,the authors study an optimal control problem where the system is driven by Brownian motion and Poisson point process and has elephant memory for the control variable and the state variable.Firstly,the authors establish the unique solvability of an anticipated backward stochastic differential equation,derive a stochastic maximum principle,and prove a verification theorem for the aforementioned optimal control problem.Furthermore,the authors generalize these results to nonzero-sum stochastic differential game problems.Finally,the authors apply the theoretical results to the duopoly game problem and obtain the corresponding Nash equilibrium solution.展开更多
In this paper,we prove an existence and uniqueness theorem for backward doubly stochastic differential equations under a new kind of stochastic non-Lipschitz condition which involves stochastic and timedependent condi...In this paper,we prove an existence and uniqueness theorem for backward doubly stochastic differential equations under a new kind of stochastic non-Lipschitz condition which involves stochastic and timedependent condition.As an application,we use the result to obtain the existence of stochastic viscosity solution for some nonlinear stochastic partial differential equations under stochastic non-Lipschitz conditions.展开更多
This paper is concerned with a Pontryagin's maximum principle for the stochastic optimal control problem with distributed delays given by integrals of not necessarily linear functions of state or control variables...This paper is concerned with a Pontryagin's maximum principle for the stochastic optimal control problem with distributed delays given by integrals of not necessarily linear functions of state or control variables.By virtue of the duality method and the generalized anticipated backward stochastic differential equations,we establish a necessary maximum principle and a sufficient verification theorem.In particular,we deal with the controlled stochastic system where the distributed delays enter both the state and the control.To explain the theoretical results,we apply them to a dynamic advertising problem.展开更多
基金supported by the National Key R&D Program of China under Grant No. 2022YFA1006103the National Natural Science Foundation of China under Grant Nos. 61821004, 61925306, and 11831010the Natural Science Foundation of Shandong Province under Grant Nos. ZR2019ZD42 and ZR2020ZD24。
文摘This paper focuses on a Pareto cooperative differential game with a linear mean-field backward stochastic system and a quadratic form cost functional. Based on a weighted sum optimality method, the Pareto game is equivalently converted to an optimal control problem. In the first place,the feedback form of Pareto optimal strategy is derived by virtue of decoupling technology, which is represented by four Riccati equations, a mean-field forward stochastic differential equation(MF-FSDE),and a mean-field backward stochastic differential equation(MF-BSDE). In addition, the corresponding Pareto optimal solution is further obtained. Finally, the author solves a problem in mathematical finance to illustrate the application of the theoretical results.
基金supported in part by theNSFC(11871037)Shandong Province(JQ201202)+3 种基金NSFC-RS(11661130148NA150344)111 Project(B12023)supported by the Qingdao Postdoctoral Application Research Project(QDBSH20220202092)。
文摘In this paper we consider general coupled mean-field reflected forward-backward stochastic differential equations(FBSDEs),whose coefficients not only depend on the solution but also on the law of the solution.The first part of the paper is devoted to the existence and the uniqueness of solutions for such general mean-field reflected backward stochastic differential equations(BSDEs)under Lipschitz conditions,and for the one-dimensional case a comparison theorem is studied.With the help of this comparison result,we prove the existence of the solution for our mean-field reflected forward-backward stochastic differential equation under continuity assumptions.It should be mentioned that,under appropriate assumptions,we prove the uniqueness of this solution as well as that of a comparison theorem for mean-field reflected FBSDEs in a non-trivial manner.
基金supported by the National Natural Science Foundation of China (11901184, 11771343)the Natural Science Foundation of Hunan Province (2020JJ5025)。
文摘In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytically derive a comparison theorem for them and for the continuous equilibrium consumption process. These continuous equilibrium consumption processes can be described by the solutions to this class of ABSVIE with jumps.Motivated by this, a class of dynamic risk measures induced by ABSVIEs with jumps are discussed.
基金supported by the Doctoral Foundation of University of Jinan under Grant No.XBS1213
文摘This paper is concerned with the mixed H_2/H_∞ control problem for a new class of stochastic systems with exogenous disturbance signal.The most distinguishing feature,compared with the existing literatures,is that the systems are described by linear backward stochastic differential equations(BSDEs).The solution to this problem is obtained completely and explicitly by using an approach which is based primarily on the completion-of-squares technique.Two equivalent expressions for the H_2/H_∞ control are presented.Contrary to forward deterministic and stochastic cases,the solution to the backward stochastic H_2/H_∞ control is no longer feedback of the current state;rather,it is feedback of the entire history of the state.
基金the National Natural Science Foundation(10371067)the National Basic Research Program of China(973 Program,2007CB814904)+2 种基金the Natural Science Foundation of Shandong Province(Z2006A01)the Doctoral Fund of Education Ministry of China,and Youth Growth Foundation of Shandong University at Weihai, P.R.China. Xiao acknowledges the Natural Science Foundation of Shandong Province (ZR2009AQ017)Independent Innovation Foundation of Shandong University,IIFSDU
文摘In this article, we study the multi-dimensional reflected backward stochastic differential equations. The existence and uniqueness result of the solution for this kind of equation is proved by the fixed point argument where every element of the solution is forced to stay above the given stochastic process, i.e., multi-dimensional obstacle, respectively. We also give a kind of multi-dimensional comparison theorem for the reflected BSDE and then use it as the tool to prove an existence result for the multi-dimensional reflected BSDE where the coefficient is continuous and has linear growth.
文摘In this paper, we present a brief survey on the updated theory of backward stochas-tic Volterra integral equations (BSVIEs, for short). BSVIEs are a natural generalization of backward stochastic diff erential equations (BSDEs, for short). Some interesting motivations of studying BSVIEs are recalled. With proper solution concepts, it is possible to establish the corresponding well-posedness for BSVIEs. We also survey various comparison theorems for solutions to BSVIEs.
文摘The existence and uniqueness of solutions to backward stochastic differential equations with jumps and with unbounded stopping time as terminal under the non_Lipschitz condition are obtained. The convergence of solutions and the continuous dependence of solutions on parameters are also derived. Then the probabilistic interpretation of solutions to some kinds of quasi_linear elliptic type integro_differential equations is obtained.
文摘The article first studies the fully coupled Forward-Backward Stochastic Differential Equations (FBSDEs) with the continuous local martingale. The article is mainly divided into two parts. In the first part, it considers Backward Stochastic Differential Equations (BSDEs) with the continuous local martingale. Then, on the basis of it, in the second part it considers the fully coupled FBSDEs with the continuous local martingale. It is proved that their solutions exist and are unique under the monotonicity conditions.
基金The NSF(10671112)of ChinaNational Basic Research Program(973 Program)(2007CB814904)of Chinathe NSF(Z2006A01)of Shandong Province and the Chinese New Century Young Teachers Program
文摘In this paper, we use the solutions of forward-backward stochastic differential equations to get the optimal control for backward stochastic linear quadratic optimal control problem. And we also give the linear feedback regulator for the optimal control problem by using the solutions of a group of Riccati equations.
文摘The comparison theorems of solutions for BSDEs in fully coupled forward-backward stochastic differential equations (FBSDEs) are studied in this paper, here in the fully coupled FBSDEs the forward SDEs are the same structure.
文摘In this paper, we propose a new second order numerical scheme for solving backward stochastic differential equations with jumps with the generator linearly depending on . And we theoretically prove that the convergence rates of them are of second order for solving and of first order for solving and in norm.
基金Supported by National Natural Science Foundation of China(71171003,71210107026)Anhui Natural Science Foundation(10040606003)Anhui Natural Science Foundation of Universities(KJ2012B019,KJ2013B023)
文摘This paper is concerned with a class of uncertain backward stochastic differential equations (UBSDEs) driven by both an m-dimensional Brownian motion and a d-dimensional canonical process with uniform Lipschitzian coefficients. Such equations can be useful in mod- elling hybrid systems, where the phenomena are simultaneously subjected to two kinds of un- certainties: randomness and uncertainty. The solutions of UBSDEs are the uncertain stochastic processes. Thus, the existence and uniqueness of solutions to UBSDEs with Lipschitzian coeffi- cients are proved.
基金Supported by the National Natural Science Foundation of China(11101140,11301177)the China Postdoctoral Science Foundation(2011M500721,2012T50391)the Zhejiang Natural Science Foundation of China(Y6110775,Y6110789)
文摘An optimal control problem for a controlled backward stochastic partial differential equation in the abstract evolution form with a Bolza type performance functional is considered. The control domain is not assumed to be convex, and all coefficients of the system are allowed to be random. A variational formula for the functional in a given control process direction is derived, by the Hamiltonian and associated adjoint system. As an application, a global stochastic maximum principle of Pontraygins type for the optimal controls is established.
基金Foundation item: Supported by the'Natured Science Foundation of the Edudation Department of Jiangsu Province(06KJD110092)
文摘In this article, we first introduce g-expectation via the solution of backward stochastic differential equation(BSDE in short) with non-Lipschitz coefficient, and give the properties of g-expectation, then we establish a general converse comparison theorem for backward stochastic differential equation with non-Lipschitz coefficient.
基金Supported by Science and Technology Development Foundation of Shanghai Education Commission(No.02JG05044)
文摘For Duffle-Epstein type Backward Stochastic Differential Equations, the comparison theorem is proved. Based on the comparison theorem, by monotone iterative technique, the existence of the minimal and maximal solutions of the equations are proved.
文摘The development of Backward Stochastic Differential Equation Theory is just a thing happened in the past years. Although its development and application is far behind Forward Stochastic Differential Equation, its wide application prospect on financial mathematics gets more and more attention. The meaning of Backward Stochastic Differential Equation is that change a already-known final (usually uncertain) goal into a present certain answer to make a present resolution. But Insurance Pricing happens to know the final result, it' s certain that the result is uncertain, that is to say, to get out of danger or not. And then make present insurance price according to the future uncertain result. The Insurance Pricing just follows the meaning of Backward Stochastic Differential Equation. Insurance Pricing itself is also a research field sprang up in past scores of years, because insurance pricing is the indisputable core of insurance work, and gets quite a few researchers' attention. This article adopts backward stochastic differential equation theory and do research on problem about technology insurance pricing.
基金supported by the National Key R&D Program of China under Grant No.2022YFA1006103the National Natural Science Foundation of China under Grant Nos.61821004,61925306,11831010,71973084,61977043the National Science Foundation of Shandong Province under Grant Nos.ZR2019ZD42 and ZR2020ZD24。
文摘Motivated by a duopoly game problem,the authors study an optimal control problem where the system is driven by Brownian motion and Poisson point process and has elephant memory for the control variable and the state variable.Firstly,the authors establish the unique solvability of an anticipated backward stochastic differential equation,derive a stochastic maximum principle,and prove a verification theorem for the aforementioned optimal control problem.Furthermore,the authors generalize these results to nonzero-sum stochastic differential game problems.Finally,the authors apply the theoretical results to the duopoly game problem and obtain the corresponding Nash equilibrium solution.
基金supported by Beijing Natural Science Foundation(No.1222004)Yuyou Project of North University of Technology(No.207051360020XN140/007)Scientific Research Foundation of North University of Technology(No.110051360002)。
文摘In this paper,we prove an existence and uniqueness theorem for backward doubly stochastic differential equations under a new kind of stochastic non-Lipschitz condition which involves stochastic and timedependent condition.As an application,we use the result to obtain the existence of stochastic viscosity solution for some nonlinear stochastic partial differential equations under stochastic non-Lipschitz conditions.
基金supported by the National Natural Science Foundation of China(11701214)Shandong Provincial Natural Science Foundation,China(ZR2019MA045).
文摘This paper is concerned with a Pontryagin's maximum principle for the stochastic optimal control problem with distributed delays given by integrals of not necessarily linear functions of state or control variables.By virtue of the duality method and the generalized anticipated backward stochastic differential equations,we establish a necessary maximum principle and a sufficient verification theorem.In particular,we deal with the controlled stochastic system where the distributed delays enter both the state and the control.To explain the theoretical results,we apply them to a dynamic advertising problem.