In this study,magneto-hydrodynamics (MHD) mixed convection effects of Al2O3-water nanofluid flow over a backward-facing step were investigated numerically for various electrical conductivity models of nanofluids.A uni...In this study,magneto-hydrodynamics (MHD) mixed convection effects of Al2O3-water nanofluid flow over a backward-facing step were investigated numerically for various electrical conductivity models of nanofluids.A uniform external magnetic field was applied to the flow and strength of magnetic field was varied with different values of dimensionless parameter Hartmann number (Ha=0,10,20,30,40).Three different electrical conductivity models were used to see the effects of MHD nanofluid flow.Besides,five different inclination angles between 0°-90° is used for the external magnetic field.The problem geometry is a backward-facing step which is used in many engineering applications where flow separation and reattachment phenomenon occurs.Mixed type convective heat transfer of backward-facing step was examined with various values of Richardson number (Ri=0.01,0.1,1,10) and four different nanoparticle volume fractions (Ф=0.01,0.015,0.020,0.025) considering different electrical conductivity models.Finite element method via commercial code COMSOL was used for computations.Results indicate that the addition of nanoparticles enhanced heat transfer significantly.Also increasing magnetic field strength and inclination angle increased heat transfer rate.Effects of different electrical conductivity models were also investigated and it was observed that they have significant effects on the fluid flow and heat transfer characteristics in the presence of magnetic field.展开更多
The backward-facing step is a critical problem existing in many engineering and industrial applications.In this study,a semi-porous baffle(the root of the baffle is a porous medium and the tip is solid) is placed behi...The backward-facing step is a critical problem existing in many engineering and industrial applications.In this study,a semi-porous baffle(the root of the baffle is a porous medium and the tip is solid) is placed behind the step.The effects of the length of the porous part,and the baffle location on the energy transfer and pressure drop are studied in different Reynolds numbers(Re=100,200,300,400,500).The effect of the Darcy number of the porous medium on the aforementioned parameters is also investigated.Both the local maximum and average relative Nusselt numbers(divided by the Nusselt of the base case with no baffle at the same Reynolds) and relative pressure drop(calculated as the relative Nusselt number) are reported.The results show that by adoption of the proper length of the porous medium,the average relative and maximum local Nusselt numbers could be enhanced by 20% and 90%,respectively.Low permeable porous media give better energy transfer.For example,porous media with Da=10^(-5) give 30% better maximum local Nusselt number and about 7% higher average Nusselt number with respect to the same case with Da=10^(-2).展开更多
The tile-type electromagnetic actuator(TEA)and stripe-type electromagnetic actuator(SEA)are applied to the active control of the perturbation energy in the liquid metal flow over a backward-facing step(BFS).Three cont...The tile-type electromagnetic actuator(TEA)and stripe-type electromagnetic actuator(SEA)are applied to the active control of the perturbation energy in the liquid metal flow over a backward-facing step(BFS).Three control strategies consisting of base flow control(BFC),linear model control(LMC)and combined model control(CMC)are considered to change the amplification rate of the perturbation energy.CMC is the combination of BFC and LMC.SEA is utilized in BFC to produce the streamwise Lorentz force thus adjusting the amplification rate via modifying the flow structures,and the magnitude of the maximum amplification rate could reach to 6 orders.TEA is used in LMC to reduce the magnitude of the amplification rate via the wall-normalwise Lorentz force,and the magnitude could be decreased by 2 orders.Both TEA and SEA are employed in CMC where the magnitude of the amplification rate could be diminished by 3 orders.In other words,the control strategy of CMC could capably alter the flow instability of the liquid metal flow.展开更多
A body force resembling the streamwise Lorentz force which decays exponentially in the wall-normalwise direction is applied in the primary and secondary separation bubbles to modify the base flow and thereby adjust th...A body force resembling the streamwise Lorentz force which decays exponentially in the wall-normalwise direction is applied in the primary and secondary separation bubbles to modify the base flow and thereby adjust the amplification rate of the perturbation energy.The amplification mechanisms are investigated numerically via analyzing the characteristics of the terms in the Reynolds-Orr equation which describes the growth rate of the perturbation energy.The results demonstrate that the main convective term always promotes the increase in the growth rate while the viscous terms usually play the reverse role.The contours of the product of the wall-normalwise and streamwise perturbation velocities distribute on both sides of the isoline,which represents the zero wall-normalwise gradient of the streamwise velocity in the base flow,due to the Kelvin-Helmholtz(KH)instability.For the case without control,the isoline downstream the reattachment point of the primary separation bubble is closer to the lower wall,and thus the viscous term near the lower wall might suppress the amplification rate.For the case in which the body force only acts on the secondary separation bubble,the secondary separation bubble is removed,and the magnitude of the negative wall-normalwise gradient of the base flow streamwise velocity decreases along the streamwise direction,and thus the growth rate of the perturbation energy is smaller than that for the case without control.For the case where the body force acts on both the separation bubbles,the secondary separation bubble is removed,the isoline stays in the central part of the channel,and thereby the viscous term has less effects on the amplification rate of which the peak value could be the maximum one for some control number.展开更多
Large eddy simulation (LES) explicitly calculates the large-scale vortex field and parameterizes the small-scale vortices.In this study,LES and κ-ε models were developed for a specific geometrical configuration of b...Large eddy simulation (LES) explicitly calculates the large-scale vortex field and parameterizes the small-scale vortices.In this study,LES and κ-ε models were developed for a specific geometrical configuration of backward-facing step (BFS).The simulation results were validated with particle image velocimetry (PIV) measurements and direct numerical simulation (DNS).This LES simulation was carried out with a Reynolds number of 9000 in a pressurized water tunnel with an expansion ratio of 2.00.The results indicate that the LES model can reveal largescale vortex motion although with a larger grid-cell size.However,the LES model tends to overestimate the top wall separation and the Reynolds stress components for the BFS flow simulation without a sufficiently fine grid.Overall,LES is a potential tool for simulating separated flow controlled by large-scale vortices.展开更多
Numerical simulations of a two-dimensional laminar forced convection flow adjacent to inclined backward-facing step in a rectangular duct are presented to examine effects of baffle on flow, heat transfer and entropy g...Numerical simulations of a two-dimensional laminar forced convection flow adjacent to inclined backward-facing step in a rectangular duct are presented to examine effects of baffle on flow, heat transfer and entropy generation distributions. The main aim of using baffles is to enhance the value of convection coefficient on the bottom wall. But the useful energy can be destroyed due to intrinsic irreversibilities in the flow by the baffle. In the present work, the amount of energy loss is estimated by the computation of entropy generation. The values of velocity and temperature which are the inputs of the entropy generation equation are obtained by the numerical solution of momentum and energy equations with blocked-off method using computational fluid dynamic technique. Discretized forms of the governing equations in the (x, y) plane are obtained by the control volume method and solved using the SIMPLE algorithm. Numerical expressions, in terms of Nusselt number, entropy generation number, Bejan number and coefficient of friction are derived in dimensionless form. Results show that although a baffle mounted onto the upper wall increases the magnitude of Nusselts number on the bottom wall, but a considerable increase in the amount of entropy generation number takes place because of this technique. For validation, the numerical results for the Nusselt number and entropy generation number are compared with theoretical findings by other investigators and reasonable agreement is found.展开更多
The mixing and combustion characteristics in a cavity flameholding combustor under inlet Mach number 2.92 are numerically investigated with ethylene injection.Dimensionless distance is defined as the ratio of the actu...The mixing and combustion characteristics in a cavity flameholding combustor under inlet Mach number 2.92 are numerically investigated with ethylene injection.Dimensionless distance is defined as the ratio of the actual distance to the height of the combustor entrance.The cavity shear-layer mode,the lifted cavity shear-layer mode,and jet wake mode with upstream separation are observed respectively with dimensionless distance equals to 1.5,4.5,and 7.5.In both non-reacting and reacting flow fields,the numerical results are essentially in agreement with the schlieren photography,flame chemiluminescence images,and wall pressure,which verify the reliability of the numerical method.The results of non-reacting flow fields show that the BackwardFacing Step(BFS)can promote the flow separation downstream at a fixed distance.The more forward the separation position is,the larger the separation zone is in the non-reacting flow field.Furthermore,the larger the separation zone is,the higher the intensity of combustion in the reacting flow field is.A reasonable distance can reduce the total pressure loss generated by the shock waves in the combustor.The flame presents remarkable three-dimensional characteristics in the reacting flow fields.When dimensionless distance equals to 4.5,there are flames near the side wall above the cavity and it is difficult for the flame stabilization in the center of the combustor,while the combustion intensity in the center of the combustor is higher than that near the side wall when dimensionless distance equals to 7.5.In the cavity flameholding combustors with a backward-facing step,the higher combustion intensity may bring much total pressure loss to the combustor.Thus,it is a good choice to achieve better thrust performance when dimensionless distance equals to 4.5 compared to the other two combustors.展开更多
Unsteady behaviors of the large-scale vortical structure superimposed in the turbulent separated and reattaching flow over a backward-facing step were convincingly delineated by performing simultaneous measurements of...Unsteady behaviors of the large-scale vortical structure superimposed in the turbulent separated and reattaching flow over a backward-facing step were convincingly delineated by performing simultaneous measurements of the wall pressure fluctuations and visualizations of the flow. Toward this end, a synchronized instrumentation system integrated with the microphone array and the high-speed camera was established. The smoke-wire technique was employed to visualize the unsteady events. A thorough analysis based on the wall pressure fluctuations disclosed that the large-scale vortical structure shedding at the frequency of fH/Uo = 0.064 gave a primary contribution to the wall pressure fluctuations, and consequently dominated unsteady behaviors of the turbulent shear layer. The convection velocity of the large-scale vortical structure was determined as Uc =0.55 U0. The instantaneous flow visualizations and wall pressure were compared in a straightforward manner. Below the separation bubble and the reattachment zone, the negative peak of the time-varying wall pressure was in phase with passage of the local large-scale vortical structure. In the redeveloping turbulent boundary layer, the decaying large-scale vortical structure was clearly revealed.展开更多
Flow over a backward-facing step was studied to investigate the effect of large-scale vortex structures on sediment incipience. The transient flow velocity field at the downstream of the backward-facing step was obtai...Flow over a backward-facing step was studied to investigate the effect of large-scale vortex structures on sediment incipience. The transient flow velocity field at the downstream of the backward-facing step was obtained using the technique of Particle Tracking Velocimetry (PTV). The optical amplification technique was employed to measure the instantaneous flow velocities near the bed and the instantaneous bed shear stress was given. The experimental observations revealed a new insight into the oscillation of the large-scale structure and the three-dimensional characteristics of the flow. In particular, very high turbulence intensity, instantaneous horizontal velocity near the bed and the bed shear stress near the reattachment point were observed. The sediment incipient probability obtained from the sequent images of sediment particles near the bed indicates that the critical instantaneous shear stress of the sediment incipience is independent of flow conditions.展开更多
The flow over a backward-facing step(BFS)is a typical separation and reattachment flow.Its flow structures and unsteady mechanisms are still not well explored.In this paper,the global velocity fields of a BFS are obta...The flow over a backward-facing step(BFS)is a typical separation and reattachment flow.Its flow structures and unsteady mechanisms are still not well explored.In this paper,the global velocity fields of a BFS are obtained by a synchronous particle image velocimetry(PIV)system with Reh=5345(Reynolds number)and Er=2(expansion ratio).Flow structures are distinguished and defined by the fraction of the negative velocity(upn).The reattachment zone(Lr)is quantitatively defined as(u0.9,u/0.1)on the bottom wall.Spatial distribution of the large-scale vortices couples well with the divided flow structures and their temporal evolution presenting four stages(forming,developing,shedding and redeveloping)when travel downstream.The unsteady motions with various low frequencies are well explained by the coherent vortices and flow structures.Among the unsteady low frequency motions,the Kelvin Helmholtz(KH)vortices and the oscillation of Xr(OX)come likely from the free shear layer.The KH vortices contribute to the unsteadiness of the temporal flow,and the OX is the primary response to the vortical fluctuations.展开更多
Wall pressure fluctuations in turbulent boundary layer flow over backward-facing step with and without entrainment were investigated. Digital array pressure sensors and multi-arrayed microphones were employed to acqui...Wall pressure fluctuations in turbulent boundary layer flow over backward-facing step with and without entrainment were investigated. Digital array pressure sensors and multi-arrayed microphones were employed to acquire the time-averaged static pressure and fluctuating pressure, respectively. The differences of two flows were scrutinized in terms of static pressure characteristics, pressure fluctuations, cross-correlation and coherence of wall pressure. Introduction of the entrainment increased scale of large-scale vortical structure and reduced its convection velocity. However, shedding frequency of large-scale vortical structures was found to be the same for both flows.展开更多
Particle diffusion in large eddy structures with various Stokes number was analyzed numerically for the two-dimensional gas-particle turbulent flow over a backward-facing step. The continuous phase simulation was anal...Particle diffusion in large eddy structures with various Stokes number was analyzed numerically for the two-dimensional gas-particle turbulent flow over a backward-facing step. The continuous phase simulation was analyzed using the large eddy simulation (LES) method while the particle phase was analyzed by the Lagrangian method. The spatial and temporal results were used to analyze the evolution of the large eddy coherent structures and the vortex-particle interactions. The effect of the particle Stokes number on the in-stantaneous particle concentration distributions was also discussed. The simulations of the single-phase flow reproduced the character of the separation and reattachment flow and the essential features of the coherent structures. Numerous and complex vortex structures appeared at the high Reynolds number. Furthermore, the simulation shows that the Stokes number plays an important role in the particle dispersion and the instanta-neous particle distribution. The continuous phase time-averaged results and the particle phase time-averaged results obtained from the LES analysis agree well with previous experimental data.展开更多
A model that uses the operator splitting technique based on Eulerian-Lagrangian method and embeds the k-ε turbulence mode is developed. The model is used to simulate a two dimensional flow over a backward-facing step...A model that uses the operator splitting technique based on Eulerian-Lagrangian method and embeds the k-ε turbulence mode is developed. The model is used to simulate a two dimensional flow over a backward-facing step with triangular mesh discrete flow field. The convection operator is solved with the characteristic method and the diffusion operator and pressure-Poisson equation are solved by finite element method. The results from the example showed that numerical results are well agreed with the experimental data,and that the method can be adapted to simulate complex turbulent flow with strong non-linear convection. The treatment of boundary conditions is also studied in the paper.展开更多
急诊科具有危重患者多,突发状况多,医疗风险高等特点,目前国内大多数医院急诊科护士以团队形式开展工作,但临床工作中易出现职责分工不明确、配合不协调、组织抢救混乱等问题^([1])。团队培训是增强团队优质高效协作的重要途径^([2]),...急诊科具有危重患者多,突发状况多,医疗风险高等特点,目前国内大多数医院急诊科护士以团队形式开展工作,但临床工作中易出现职责分工不明确、配合不协调、组织抢救混乱等问题^([1])。团队培训是增强团队优质高效协作的重要途径^([2]),为进一步提升急诊护理团队协作,保障患者安全,本次研究将前期基于提高医疗质量和患者安全的团队策略与工具(team strategies and tools to enhance performance and patient safety,TeamSTEPPS)理论构建的急诊护理团队培训方案^([3])进行临床应用,取得了较好的效果。现报道如下。展开更多
BACKGROUND Although en bloc dissection of hepatic hilum lymph nodes has many advantages in radical tumor treatment,the feasibility and safety of this approach for laparo-scopic pancreaticoduodenectomy(LPD)require furt...BACKGROUND Although en bloc dissection of hepatic hilum lymph nodes has many advantages in radical tumor treatment,the feasibility and safety of this approach for laparo-scopic pancreaticoduodenectomy(LPD)require further clinical evaluation and investigation.AIM To explore the application value of the"five steps four quadrants"modularized en bloc dissection technique for accessing hepatic hilum lymph nodes in LPD patients.METHODS A total of 52 patients who underwent LPD via the"five steps four quadrants"modularized en bloc dissection technique for hepatic hilum lymph nodes from April 2021 to July 2023 in our department were analyzed retrospectively.The patients'body mass index(BMI),preoperative laboratory indices,intraoperative variables and postoperative complications were recorded.The relationships between preoperative data and intraoperative lymph node dissection time and blood loss were also analyzed.RESULTS Among the 52 patients,36 were males and 16 were females,and the average age was 62.2±11.0 years.There were 26 patients with pancreatic head cancer,16 patients with periampullary cancer,and 10 patients with distal bile duct cancer.The BMI was 22.3±3.3 kg/m²,and the median total bilirubin(TBIL)concentration was 57.7(16.0-155.7)µmol/L.All patients successfully underwent the"five steps four quadrants"modularized en bloc dissection technique without lymph node clearance-related complications such as postoperative bleeding or lymphatic leakage.Correlation analysis revealed significant associations between preoperative BMI(r=0.3581,P=0.0091),TBIL level(r=0.2988,P=0.0341),prothrombin time(r=0.3018,P=0.0297)and lymph node dissection time.Moreover,dissection time was significantly correlated with intraoperative blood loss(r=0.7744,P<0.0001).Further stratified analysis demonstrated that patients with a preoperative BMI≥21.9 kg/m²and a TIBL concentration≥57.7μmol/L had significantly longer lymph node dissection times(both P<0.05).CONCLUSION The"five steps four quadrants"modularized en bloc dissection technique for accessing the hepatic hilum lymph node is safe and feasible for LPD.This technique is expected to improve the efficiency of hepatic hilum lymph node dissection and shorten the learning curve;thus,it is worthy of further clinical promotion and application.展开更多
In this paper,the experimental investigation on the performance improvement of conventional stepped solar still is conducted.The steps are covered by the porous material to improve the performance of the conventional ...In this paper,the experimental investigation on the performance improvement of conventional stepped solar still is conducted.The steps are covered by the porous material to improve the performance of the conventional device and increase the evaporation rate.All the parameters,including the temperature on the glass surface,the water temperature inside the evaporation zone,and the amount of water produced in both conventional and modified stepped solar stills are measured and compared.The efficiency of two devices and their exergy efficiency have been calculated.Finally,the economic analysis of both devices has been done to check the economic feasibility of the modified device.The amount of freshwater generated during one day was 2244.4 and 3076.2 mL/m^(2),respectively for the conventional and modified stepped solar stills.As a result,the amount of water produced in one day by modified stepped solar still is 35.5% more than the conventional one.Also,the costs for the conventional and modified stepped solar stills have been calculated as 0.0359 and 0.029$/(L·m^(-2)),respectively.展开更多
A new kind of step-flow growth mode is proposed,which adopts sidewall as step source on patterned GaN substrate.The terrace width of steps originated from the sidewall was found to change with the growth temperature a...A new kind of step-flow growth mode is proposed,which adopts sidewall as step source on patterned GaN substrate.The terrace width of steps originated from the sidewall was found to change with the growth temperature and ammonia flux.The growth mechanism is explained and simulated based on step motion model.This work helps better understand the behaviors of step advancement and puts forward a method of precisely modulating atomic steps.展开更多
Half-integer microwave induced steps(Shapiro steps)have been observed in many different Josephson junction systems,which have attracted a lot of attention because they signify the deviation of current phase relation(C...Half-integer microwave induced steps(Shapiro steps)have been observed in many different Josephson junction systems,which have attracted a lot of attention because they signify the deviation of current phase relation(CPR)and uncover many unconventional physical properties.In this article,we first report the discovery of half-integer Shapiro steps in MgB_(2)focused He ion beam(He-FIB)Josephson junctions.The half-integer steps'dependence on microwave frequency,temperature,microwave power,and magnetic field is also analyzed.We find that the existence of half-integer steps can be controlled by the magnetic field periodically,which is similar to that of high temperature superconductor(HTS)grain boundary junctions,and the similarity of the microstructures between gain boundary junctions and He-FIB junctions is discussed.As a consequence,we mainly attribute the physical origin of half-integer steps in MgB_(2)He-FIB junctions to the model that a He-FIB junction is analogous to a parallel junctions'array.Our results show that He-FIB technology is a promising platform for researching CPR in junctions made of different superconductors.展开更多
In practical engineering,due to the noncontinuity characteristics of joints in rock slopes,in addition to plane failure,stepped sliding failure may occur for intermittently jointed rock slopes.Especially for intermitt...In practical engineering,due to the noncontinuity characteristics of joints in rock slopes,in addition to plane failure,stepped sliding failure may occur for intermittently jointed rock slopes.Especially for intermittently bedding jointed rock slopes,the correlation and difference in strength parameters between joints and rock bridges,along with the various failure modes and intermittency of rock bridges,contribute to the complexity of stepped failure modes and the unpredictability of failure regions.Based on the upper-bound limit analysis method and multi-sliders step-path failure mode,considering the shear and tensile failure of rock bridges and the weakened relationship between the strength parameters of rock bridges and jointed surfaces,by introducing the modified M-C failure criterion and the formula for calculating the energy consumption of tensile failure of rock bridges,two failure mechanisms are constructed to obtain the safety factor(F_(s))of intermittently jointed rock slopes.The sequential quadratic programming method is used to obtain the optimal upper-bound solution for F_(s).The influence of multiple key parameters(slope height H,horizontal distance L,Slope angleβ,shear strength parameters of the rock bridgeφr and cr,Dimensionless parameter u,weakening coefficients of the internal friction angle and cohesion between the rock bridges and joint surfaces Kφand Kc)on the stability analysis of intermittently jointed rock slopes under the shear failure mode of rock bridges as well as under the tensile failure mode is also explored.The reliability of the failure mechanisms is verified by comparative analysis with theoretical results,numerical results,and landslide cases,and the variation rules of F_(s)with each key parameter are obtained.The results show that F_(s) varies linearly withφr and cr of the rock bridge and with K_(φ)and K_(c),whereas F_(s)changes nonlinearly with H and L.In particular,with the increase in Kφand Kc,Fs increases by approximately 52.78%and 171.02%on average,respectively.For rock bridge tensile failure,F_(s) shows a nonlinearly positive correlation withφr,cr,Kφand Kc.In particular,with the increase in Kφand Kc,Fs increases by approximately 13%and 61.69%on average,respectively.Fs decreases rapidly with increasing slope gradientβand decreasing dimensionless parameterμ.When Kφand Kc are both less than 1.0,the stepped sliding surface occurs more easily than the plane failure surface,especially in the case of tensile failure of the rock bridge.In addition,rock slopes with higher strength parameters,taller heights,and greater weakening coefficients are prone to rock bridge tension failure with lower Fs,and more attention should be given to the occurrence of such accidents in actual engineering.展开更多
Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore th...Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore the dynamic behaviors of an FGM stepped beam with different boundary conditions based on an efficient solving method.Under the assumptions of the Euler-Bernoulli beam theory,the governing differential equations of an individual FGM beam are derived with Hamilton’s principle and decoupled via the separation-of-variable approach.Then,the free and forced vibrations of the FGM stepped beam are solved with the transfer matrix method(TMM).Two models,i.e.,a three-level FGM stepped beam and a five-level FGM stepped beam,are considered,and their natural frequencies and mode shapes are presented.To demonstrate the validity of the method in this paper,the simulation results by ABAQUS are also given.On this basis,the detailed parametric analyses on the frequencies and dynamic responses of the three-level FGM stepped beam are carried out.The results show the accuracy and efficiency of the TMM.展开更多
文摘In this study,magneto-hydrodynamics (MHD) mixed convection effects of Al2O3-water nanofluid flow over a backward-facing step were investigated numerically for various electrical conductivity models of nanofluids.A uniform external magnetic field was applied to the flow and strength of magnetic field was varied with different values of dimensionless parameter Hartmann number (Ha=0,10,20,30,40).Three different electrical conductivity models were used to see the effects of MHD nanofluid flow.Besides,five different inclination angles between 0°-90° is used for the external magnetic field.The problem geometry is a backward-facing step which is used in many engineering applications where flow separation and reattachment phenomenon occurs.Mixed type convective heat transfer of backward-facing step was examined with various values of Richardson number (Ri=0.01,0.1,1,10) and four different nanoparticle volume fractions (Ф=0.01,0.015,0.020,0.025) considering different electrical conductivity models.Finite element method via commercial code COMSOL was used for computations.Results indicate that the addition of nanoparticles enhanced heat transfer significantly.Also increasing magnetic field strength and inclination angle increased heat transfer rate.Effects of different electrical conductivity models were also investigated and it was observed that they have significant effects on the fluid flow and heat transfer characteristics in the presence of magnetic field.
文摘The backward-facing step is a critical problem existing in many engineering and industrial applications.In this study,a semi-porous baffle(the root of the baffle is a porous medium and the tip is solid) is placed behind the step.The effects of the length of the porous part,and the baffle location on the energy transfer and pressure drop are studied in different Reynolds numbers(Re=100,200,300,400,500).The effect of the Darcy number of the porous medium on the aforementioned parameters is also investigated.Both the local maximum and average relative Nusselt numbers(divided by the Nusselt of the base case with no baffle at the same Reynolds) and relative pressure drop(calculated as the relative Nusselt number) are reported.The results show that by adoption of the proper length of the porous medium,the average relative and maximum local Nusselt numbers could be enhanced by 20% and 90%,respectively.Low permeable porous media give better energy transfer.For example,porous media with Da=10^(-5) give 30% better maximum local Nusselt number and about 7% higher average Nusselt number with respect to the same case with Da=10^(-2).
基金Project supported by the National Natural Science Foundation of China(Grant No.U2141246)
文摘The tile-type electromagnetic actuator(TEA)and stripe-type electromagnetic actuator(SEA)are applied to the active control of the perturbation energy in the liquid metal flow over a backward-facing step(BFS).Three control strategies consisting of base flow control(BFC),linear model control(LMC)and combined model control(CMC)are considered to change the amplification rate of the perturbation energy.CMC is the combination of BFC and LMC.SEA is utilized in BFC to produce the streamwise Lorentz force thus adjusting the amplification rate via modifying the flow structures,and the magnitude of the maximum amplification rate could reach to 6 orders.TEA is used in LMC to reduce the magnitude of the amplification rate via the wall-normalwise Lorentz force,and the magnitude could be decreased by 2 orders.Both TEA and SEA are employed in CMC where the magnitude of the amplification rate could be diminished by 3 orders.In other words,the control strategy of CMC could capably alter the flow instability of the liquid metal flow.
基金the National Natural Science Foundation of China (Nos. 51776087 and 51979125)。
文摘A body force resembling the streamwise Lorentz force which decays exponentially in the wall-normalwise direction is applied in the primary and secondary separation bubbles to modify the base flow and thereby adjust the amplification rate of the perturbation energy.The amplification mechanisms are investigated numerically via analyzing the characteristics of the terms in the Reynolds-Orr equation which describes the growth rate of the perturbation energy.The results demonstrate that the main convective term always promotes the increase in the growth rate while the viscous terms usually play the reverse role.The contours of the product of the wall-normalwise and streamwise perturbation velocities distribute on both sides of the isoline,which represents the zero wall-normalwise gradient of the streamwise velocity in the base flow,due to the Kelvin-Helmholtz(KH)instability.For the case without control,the isoline downstream the reattachment point of the primary separation bubble is closer to the lower wall,and thus the viscous term near the lower wall might suppress the amplification rate.For the case in which the body force only acts on the secondary separation bubble,the secondary separation bubble is removed,and the magnitude of the negative wall-normalwise gradient of the base flow streamwise velocity decreases along the streamwise direction,and thus the growth rate of the perturbation energy is smaller than that for the case without control.For the case where the body force acts on both the separation bubbles,the secondary separation bubble is removed,the isoline stays in the central part of the channel,and thereby the viscous term has less effects on the amplification rate of which the peak value could be the maximum one for some control number.
基金supported by the National Natural Science Foundation of China(Grant No.51379128)
文摘Large eddy simulation (LES) explicitly calculates the large-scale vortex field and parameterizes the small-scale vortices.In this study,LES and κ-ε models were developed for a specific geometrical configuration of backward-facing step (BFS).The simulation results were validated with particle image velocimetry (PIV) measurements and direct numerical simulation (DNS).This LES simulation was carried out with a Reynolds number of 9000 in a pressurized water tunnel with an expansion ratio of 2.00.The results indicate that the LES model can reveal largescale vortex motion although with a larger grid-cell size.However,the LES model tends to overestimate the top wall separation and the Reynolds stress components for the BFS flow simulation without a sufficiently fine grid.Overall,LES is a potential tool for simulating separated flow controlled by large-scale vortices.
文摘Numerical simulations of a two-dimensional laminar forced convection flow adjacent to inclined backward-facing step in a rectangular duct are presented to examine effects of baffle on flow, heat transfer and entropy generation distributions. The main aim of using baffles is to enhance the value of convection coefficient on the bottom wall. But the useful energy can be destroyed due to intrinsic irreversibilities in the flow by the baffle. In the present work, the amount of energy loss is estimated by the computation of entropy generation. The values of velocity and temperature which are the inputs of the entropy generation equation are obtained by the numerical solution of momentum and energy equations with blocked-off method using computational fluid dynamic technique. Discretized forms of the governing equations in the (x, y) plane are obtained by the control volume method and solved using the SIMPLE algorithm. Numerical expressions, in terms of Nusselt number, entropy generation number, Bejan number and coefficient of friction are derived in dimensionless form. Results show that although a baffle mounted onto the upper wall increases the magnitude of Nusselts number on the bottom wall, but a considerable increase in the amount of entropy generation number takes place because of this technique. For validation, the numerical results for the Nusselt number and entropy generation number are compared with theoretical findings by other investigators and reasonable agreement is found.
基金supported by the National Natural Science Foundation of China(Nos.11925207 and 12002381)the Scientific Research Plan of the National University of Defense Technology in 2019,China(No.ZK19-02)the Science and Technology Foundation of State Key Laboratory,China(No.6142703200311).
文摘The mixing and combustion characteristics in a cavity flameholding combustor under inlet Mach number 2.92 are numerically investigated with ethylene injection.Dimensionless distance is defined as the ratio of the actual distance to the height of the combustor entrance.The cavity shear-layer mode,the lifted cavity shear-layer mode,and jet wake mode with upstream separation are observed respectively with dimensionless distance equals to 1.5,4.5,and 7.5.In both non-reacting and reacting flow fields,the numerical results are essentially in agreement with the schlieren photography,flame chemiluminescence images,and wall pressure,which verify the reliability of the numerical method.The results of non-reacting flow fields show that the BackwardFacing Step(BFS)can promote the flow separation downstream at a fixed distance.The more forward the separation position is,the larger the separation zone is in the non-reacting flow field.Furthermore,the larger the separation zone is,the higher the intensity of combustion in the reacting flow field is.A reasonable distance can reduce the total pressure loss generated by the shock waves in the combustor.The flame presents remarkable three-dimensional characteristics in the reacting flow fields.When dimensionless distance equals to 4.5,there are flames near the side wall above the cavity and it is difficult for the flame stabilization in the center of the combustor,while the combustion intensity in the center of the combustor is higher than that near the side wall when dimensionless distance equals to 7.5.In the cavity flameholding combustors with a backward-facing step,the higher combustion intensity may bring much total pressure loss to the combustor.Thus,it is a good choice to achieve better thrust performance when dimensionless distance equals to 4.5 compared to the other two combustors.
文摘Unsteady behaviors of the large-scale vortical structure superimposed in the turbulent separated and reattaching flow over a backward-facing step were convincingly delineated by performing simultaneous measurements of the wall pressure fluctuations and visualizations of the flow. Toward this end, a synchronized instrumentation system integrated with the microphone array and the high-speed camera was established. The smoke-wire technique was employed to visualize the unsteady events. A thorough analysis based on the wall pressure fluctuations disclosed that the large-scale vortical structure shedding at the frequency of fH/Uo = 0.064 gave a primary contribution to the wall pressure fluctuations, and consequently dominated unsteady behaviors of the turbulent shear layer. The convection velocity of the large-scale vortical structure was determined as Uc =0.55 U0. The instantaneous flow visualizations and wall pressure were compared in a straightforward manner. Below the separation bubble and the reattachment zone, the negative peak of the time-varying wall pressure was in phase with passage of the local large-scale vortical structure. In the redeveloping turbulent boundary layer, the decaying large-scale vortical structure was clearly revealed.
基金Project supported by the National Natural Science Foundation of China(Grant No.10602017).
文摘Flow over a backward-facing step was studied to investigate the effect of large-scale vortex structures on sediment incipience. The transient flow velocity field at the downstream of the backward-facing step was obtained using the technique of Particle Tracking Velocimetry (PTV). The optical amplification technique was employed to measure the instantaneous flow velocities near the bed and the instantaneous bed shear stress was given. The experimental observations revealed a new insight into the oscillation of the large-scale structure and the three-dimensional characteristics of the flow. In particular, very high turbulence intensity, instantaneous horizontal velocity near the bed and the bed shear stress near the reattachment point were observed. The sediment incipient probability obtained from the sequent images of sediment particles near the bed indicates that the critical instantaneous shear stress of the sediment incipience is independent of flow conditions.
基金Project supported by the National Natural Science Foundation of China(Grant No.51909169)The Science and Technology Support Program of Jiangsu Province(Grant No.SBK2019042181)+1 种基金the Guizhou Science and Technology Cooperation Support((2017)2865)the International S&T Cooperation Program of China(Grant No.2015DFA01000).
文摘The flow over a backward-facing step(BFS)is a typical separation and reattachment flow.Its flow structures and unsteady mechanisms are still not well explored.In this paper,the global velocity fields of a BFS are obtained by a synchronous particle image velocimetry(PIV)system with Reh=5345(Reynolds number)and Er=2(expansion ratio).Flow structures are distinguished and defined by the fraction of the negative velocity(upn).The reattachment zone(Lr)is quantitatively defined as(u0.9,u/0.1)on the bottom wall.Spatial distribution of the large-scale vortices couples well with the divided flow structures and their temporal evolution presenting four stages(forming,developing,shedding and redeveloping)when travel downstream.The unsteady motions with various low frequencies are well explained by the coherent vortices and flow structures.Among the unsteady low frequency motions,the Kelvin Helmholtz(KH)vortices and the oscillation of Xr(OX)come likely from the free shear layer.The KH vortices contribute to the unsteadiness of the temporal flow,and the OX is the primary response to the vortical fluctuations.
文摘Wall pressure fluctuations in turbulent boundary layer flow over backward-facing step with and without entrainment were investigated. Digital array pressure sensors and multi-arrayed microphones were employed to acquire the time-averaged static pressure and fluctuating pressure, respectively. The differences of two flows were scrutinized in terms of static pressure characteristics, pressure fluctuations, cross-correlation and coherence of wall pressure. Introduction of the entrainment increased scale of large-scale vortical structure and reduced its convection velocity. However, shedding frequency of large-scale vortical structures was found to be the same for both flows.
基金the National Natural Science Foundation of China (No.19972026)
文摘Particle diffusion in large eddy structures with various Stokes number was analyzed numerically for the two-dimensional gas-particle turbulent flow over a backward-facing step. The continuous phase simulation was analyzed using the large eddy simulation (LES) method while the particle phase was analyzed by the Lagrangian method. The spatial and temporal results were used to analyze the evolution of the large eddy coherent structures and the vortex-particle interactions. The effect of the particle Stokes number on the in-stantaneous particle concentration distributions was also discussed. The simulations of the single-phase flow reproduced the character of the separation and reattachment flow and the essential features of the coherent structures. Numerous and complex vortex structures appeared at the high Reynolds number. Furthermore, the simulation shows that the Stokes number plays an important role in the particle dispersion and the instanta-neous particle distribution. The continuous phase time-averaged results and the particle phase time-averaged results obtained from the LES analysis agree well with previous experimental data.
基金supported by the Key Technologies Research&Development Program of China in the11th Five-Year Plan(Grant No.2008BAB29B04)
文摘A model that uses the operator splitting technique based on Eulerian-Lagrangian method and embeds the k-ε turbulence mode is developed. The model is used to simulate a two dimensional flow over a backward-facing step with triangular mesh discrete flow field. The convection operator is solved with the characteristic method and the diffusion operator and pressure-Poisson equation are solved by finite element method. The results from the example showed that numerical results are well agreed with the experimental data,and that the method can be adapted to simulate complex turbulent flow with strong non-linear convection. The treatment of boundary conditions is also studied in the paper.
文摘急诊科具有危重患者多,突发状况多,医疗风险高等特点,目前国内大多数医院急诊科护士以团队形式开展工作,但临床工作中易出现职责分工不明确、配合不协调、组织抢救混乱等问题^([1])。团队培训是增强团队优质高效协作的重要途径^([2]),为进一步提升急诊护理团队协作,保障患者安全,本次研究将前期基于提高医疗质量和患者安全的团队策略与工具(team strategies and tools to enhance performance and patient safety,TeamSTEPPS)理论构建的急诊护理团队培训方案^([3])进行临床应用,取得了较好的效果。现报道如下。
基金Supported by Health Research Program of Anhui,No.AHWJ2022b032。
文摘BACKGROUND Although en bloc dissection of hepatic hilum lymph nodes has many advantages in radical tumor treatment,the feasibility and safety of this approach for laparo-scopic pancreaticoduodenectomy(LPD)require further clinical evaluation and investigation.AIM To explore the application value of the"five steps four quadrants"modularized en bloc dissection technique for accessing hepatic hilum lymph nodes in LPD patients.METHODS A total of 52 patients who underwent LPD via the"five steps four quadrants"modularized en bloc dissection technique for hepatic hilum lymph nodes from April 2021 to July 2023 in our department were analyzed retrospectively.The patients'body mass index(BMI),preoperative laboratory indices,intraoperative variables and postoperative complications were recorded.The relationships between preoperative data and intraoperative lymph node dissection time and blood loss were also analyzed.RESULTS Among the 52 patients,36 were males and 16 were females,and the average age was 62.2±11.0 years.There were 26 patients with pancreatic head cancer,16 patients with periampullary cancer,and 10 patients with distal bile duct cancer.The BMI was 22.3±3.3 kg/m²,and the median total bilirubin(TBIL)concentration was 57.7(16.0-155.7)µmol/L.All patients successfully underwent the"five steps four quadrants"modularized en bloc dissection technique without lymph node clearance-related complications such as postoperative bleeding or lymphatic leakage.Correlation analysis revealed significant associations between preoperative BMI(r=0.3581,P=0.0091),TBIL level(r=0.2988,P=0.0341),prothrombin time(r=0.3018,P=0.0297)and lymph node dissection time.Moreover,dissection time was significantly correlated with intraoperative blood loss(r=0.7744,P<0.0001).Further stratified analysis demonstrated that patients with a preoperative BMI≥21.9 kg/m²and a TIBL concentration≥57.7μmol/L had significantly longer lymph node dissection times(both P<0.05).CONCLUSION The"five steps four quadrants"modularized en bloc dissection technique for accessing the hepatic hilum lymph node is safe and feasible for LPD.This technique is expected to improve the efficiency of hepatic hilum lymph node dissection and shorten the learning curve;thus,it is worthy of further clinical promotion and application.
文摘In this paper,the experimental investigation on the performance improvement of conventional stepped solar still is conducted.The steps are covered by the porous material to improve the performance of the conventional device and increase the evaporation rate.All the parameters,including the temperature on the glass surface,the water temperature inside the evaporation zone,and the amount of water produced in both conventional and modified stepped solar stills are measured and compared.The efficiency of two devices and their exergy efficiency have been calculated.Finally,the economic analysis of both devices has been done to check the economic feasibility of the modified device.The amount of freshwater generated during one day was 2244.4 and 3076.2 mL/m^(2),respectively for the conventional and modified stepped solar stills.As a result,the amount of water produced in one day by modified stepped solar still is 35.5% more than the conventional one.Also,the costs for the conventional and modified stepped solar stills have been calculated as 0.0359 and 0.029$/(L·m^(-2)),respectively.
基金This work was supported by the National Key Research and Development Program of China(2022YFB2802801)the National Natural Science Foundation of China(61834008,U21A20493)+1 种基金the Key Research and Development Program of Jiangsu Province(BE2020004,BE2021008-1)the Suzhou Key Laboratory of New-type Laser Display Technology(SZS2022007).
文摘A new kind of step-flow growth mode is proposed,which adopts sidewall as step source on patterned GaN substrate.The terrace width of steps originated from the sidewall was found to change with the growth temperature and ammonia flux.The growth mechanism is explained and simulated based on step motion model.This work helps better understand the behaviors of step advancement and puts forward a method of precisely modulating atomic steps.
基金supported by the National Natural Science Foundation of China (Grant No.12104016)the National Key Research and Development Program of China (Grant No.2020YFF01014706)。
文摘Half-integer microwave induced steps(Shapiro steps)have been observed in many different Josephson junction systems,which have attracted a lot of attention because they signify the deviation of current phase relation(CPR)and uncover many unconventional physical properties.In this article,we first report the discovery of half-integer Shapiro steps in MgB_(2)focused He ion beam(He-FIB)Josephson junctions.The half-integer steps'dependence on microwave frequency,temperature,microwave power,and magnetic field is also analyzed.We find that the existence of half-integer steps can be controlled by the magnetic field periodically,which is similar to that of high temperature superconductor(HTS)grain boundary junctions,and the similarity of the microstructures between gain boundary junctions and He-FIB junctions is discussed.As a consequence,we mainly attribute the physical origin of half-integer steps in MgB_(2)He-FIB junctions to the model that a He-FIB junction is analogous to a parallel junctions'array.Our results show that He-FIB technology is a promising platform for researching CPR in junctions made of different superconductors.
基金supported by the National Natural Science Foundation of China(Nos.52208369,52309138,52209142,51978666)the Department of Science and Technology of Sichuan Province(2023NSFSC0284).
文摘In practical engineering,due to the noncontinuity characteristics of joints in rock slopes,in addition to plane failure,stepped sliding failure may occur for intermittently jointed rock slopes.Especially for intermittently bedding jointed rock slopes,the correlation and difference in strength parameters between joints and rock bridges,along with the various failure modes and intermittency of rock bridges,contribute to the complexity of stepped failure modes and the unpredictability of failure regions.Based on the upper-bound limit analysis method and multi-sliders step-path failure mode,considering the shear and tensile failure of rock bridges and the weakened relationship between the strength parameters of rock bridges and jointed surfaces,by introducing the modified M-C failure criterion and the formula for calculating the energy consumption of tensile failure of rock bridges,two failure mechanisms are constructed to obtain the safety factor(F_(s))of intermittently jointed rock slopes.The sequential quadratic programming method is used to obtain the optimal upper-bound solution for F_(s).The influence of multiple key parameters(slope height H,horizontal distance L,Slope angleβ,shear strength parameters of the rock bridgeφr and cr,Dimensionless parameter u,weakening coefficients of the internal friction angle and cohesion between the rock bridges and joint surfaces Kφand Kc)on the stability analysis of intermittently jointed rock slopes under the shear failure mode of rock bridges as well as under the tensile failure mode is also explored.The reliability of the failure mechanisms is verified by comparative analysis with theoretical results,numerical results,and landslide cases,and the variation rules of F_(s)with each key parameter are obtained.The results show that F_(s) varies linearly withφr and cr of the rock bridge and with K_(φ)and K_(c),whereas F_(s)changes nonlinearly with H and L.In particular,with the increase in Kφand Kc,Fs increases by approximately 52.78%and 171.02%on average,respectively.For rock bridge tensile failure,F_(s) shows a nonlinearly positive correlation withφr,cr,Kφand Kc.In particular,with the increase in Kφand Kc,Fs increases by approximately 13%and 61.69%on average,respectively.Fs decreases rapidly with increasing slope gradientβand decreasing dimensionless parameterμ.When Kφand Kc are both less than 1.0,the stepped sliding surface occurs more easily than the plane failure surface,especially in the case of tensile failure of the rock bridge.In addition,rock slopes with higher strength parameters,taller heights,and greater weakening coefficients are prone to rock bridge tension failure with lower Fs,and more attention should be given to the occurrence of such accidents in actual engineering.
基金the National Natural Science Foundation of China(Nos.12302007,12372006,and 12202109)the Specific Research Project of Guangxi for Research Bases and Talents(No.AD23026051)。
文摘Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore the dynamic behaviors of an FGM stepped beam with different boundary conditions based on an efficient solving method.Under the assumptions of the Euler-Bernoulli beam theory,the governing differential equations of an individual FGM beam are derived with Hamilton’s principle and decoupled via the separation-of-variable approach.Then,the free and forced vibrations of the FGM stepped beam are solved with the transfer matrix method(TMM).Two models,i.e.,a three-level FGM stepped beam and a five-level FGM stepped beam,are considered,and their natural frequencies and mode shapes are presented.To demonstrate the validity of the method in this paper,the simulation results by ABAQUS are also given.On this basis,the detailed parametric analyses on the frequencies and dynamic responses of the three-level FGM stepped beam are carried out.The results show the accuracy and efficiency of the TMM.