In this paper we consider general coupled mean-field reflected forward-backward stochastic differential equations(FBSDEs),whose coefficients not only depend on the solution but also on the law of the solution.The firs...In this paper we consider general coupled mean-field reflected forward-backward stochastic differential equations(FBSDEs),whose coefficients not only depend on the solution but also on the law of the solution.The first part of the paper is devoted to the existence and the uniqueness of solutions for such general mean-field reflected backward stochastic differential equations(BSDEs)under Lipschitz conditions,and for the one-dimensional case a comparison theorem is studied.With the help of this comparison result,we prove the existence of the solution for our mean-field reflected forward-backward stochastic differential equation under continuity assumptions.It should be mentioned that,under appropriate assumptions,we prove the uniqueness of this solution as well as that of a comparison theorem for mean-field reflected FBSDEs in a non-trivial manner.展开更多
In this article, we study the multi-dimensional reflected backward stochastic differential equations. The existence and uniqueness result of the solution for this kind of equation is proved by the fixed point argument...In this article, we study the multi-dimensional reflected backward stochastic differential equations. The existence and uniqueness result of the solution for this kind of equation is proved by the fixed point argument where every element of the solution is forced to stay above the given stochastic process, i.e., multi-dimensional obstacle, respectively. We also give a kind of multi-dimensional comparison theorem for the reflected BSDE and then use it as the tool to prove an existence result for the multi-dimensional reflected BSDE where the coefficient is continuous and has linear growth.展开更多
The existence and uniqueness of solutions to backward stochastic differential equations with jumps and with unbounded stopping time as terminal under the non_Lipschitz condition are obtained. The convergence of soluti...The existence and uniqueness of solutions to backward stochastic differential equations with jumps and with unbounded stopping time as terminal under the non_Lipschitz condition are obtained. The convergence of solutions and the continuous dependence of solutions on parameters are also derived. Then the probabilistic interpretation of solutions to some kinds of quasi_linear elliptic type integro_differential equations is obtained.展开更多
The article first studies the fully coupled Forward-Backward Stochastic Differential Equations (FBSDEs) with the continuous local martingale. The article is mainly divided into two parts. In the first part, it consi...The article first studies the fully coupled Forward-Backward Stochastic Differential Equations (FBSDEs) with the continuous local martingale. The article is mainly divided into two parts. In the first part, it considers Backward Stochastic Differential Equations (BSDEs) with the continuous local martingale. Then, on the basis of it, in the second part it considers the fully coupled FBSDEs with the continuous local martingale. It is proved that their solutions exist and are unique under the monotonicity conditions.展开更多
One existence integral condition was obtained for the adapted solution of the general backward stochastic differential equations(BSDEs). Then by solving the integral constraint condition, and using a limit procedure, ...One existence integral condition was obtained for the adapted solution of the general backward stochastic differential equations(BSDEs). Then by solving the integral constraint condition, and using a limit procedure, a new approach method is proposed and the existence of the solution was proved for the BSDEs if the diffusion coefficients satisfy the locally Lipschitz condition. In the special case the solution was a Brownian bridge. The uniqueness is also considered in the meaning of "F0-integrable equivalent class" . The new approach method would give us an efficient way to control the main object instead of the "noise".展开更多
In this paper, we use the solutions of forward-backward stochastic differential equations to get the optimal control for backward stochastic linear quadratic optimal control problem. And we also give the linear feedba...In this paper, we use the solutions of forward-backward stochastic differential equations to get the optimal control for backward stochastic linear quadratic optimal control problem. And we also give the linear feedback regulator for the optimal control problem by using the solutions of a group of Riccati equations.展开更多
The comparison theorems of solutions for BSDEs in fully coupled forward-backward stochastic differential equations (FBSDEs) are studied in this paper, here in the fully coupled FBSDEs the forward SDEs are the same str...The comparison theorems of solutions for BSDEs in fully coupled forward-backward stochastic differential equations (FBSDEs) are studied in this paper, here in the fully coupled FBSDEs the forward SDEs are the same structure.展开更多
In this paper, we propose a new second order numerical scheme for solving backward stochastic differential equations with jumps with the generator linearly depending on . And we theoretically prove that the conv...In this paper, we propose a new second order numerical scheme for solving backward stochastic differential equations with jumps with the generator linearly depending on . And we theoretically prove that the convergence rates of them are of second order for solving and of first order for solving and in norm.展开更多
This paper is concerned with a class of uncertain backward stochastic differential equations (UBSDEs) driven by both an m-dimensional Brownian motion and a d-dimensional canonical process with uniform Lipschitzian c...This paper is concerned with a class of uncertain backward stochastic differential equations (UBSDEs) driven by both an m-dimensional Brownian motion and a d-dimensional canonical process with uniform Lipschitzian coefficients. Such equations can be useful in mod- elling hybrid systems, where the phenomena are simultaneously subjected to two kinds of un- certainties: randomness and uncertainty. The solutions of UBSDEs are the uncertain stochastic processes. Thus, the existence and uniqueness of solutions to UBSDEs with Lipschitzian coeffi- cients are proved.展开更多
In this article, we first introduce g-expectation via the solution of backward stochastic differential equation(BSDE in short) with non-Lipschitz coefficient, and give the properties of g-expectation, then we establ...In this article, we first introduce g-expectation via the solution of backward stochastic differential equation(BSDE in short) with non-Lipschitz coefficient, and give the properties of g-expectation, then we establish a general converse comparison theorem for backward stochastic differential equation with non-Lipschitz coefficient.展开更多
For Duffle-Epstein type Backward Stochastic Differential Equations, the comparison theorem is proved. Based on the comparison theorem, by monotone iterative technique, the existence of the minimal and maximal solution...For Duffle-Epstein type Backward Stochastic Differential Equations, the comparison theorem is proved. Based on the comparison theorem, by monotone iterative technique, the existence of the minimal and maximal solutions of the equations are proved.展开更多
The development of Backward Stochastic Differential Equation Theory is just a thing happened in the past years. Although its development and application is far behind Forward Stochastic Differential Equation, its wide...The development of Backward Stochastic Differential Equation Theory is just a thing happened in the past years. Although its development and application is far behind Forward Stochastic Differential Equation, its wide application prospect on financial mathematics gets more and more attention. The meaning of Backward Stochastic Differential Equation is that change a already-known final (usually uncertain) goal into a present certain answer to make a present resolution. But Insurance Pricing happens to know the final result, it' s certain that the result is uncertain, that is to say, to get out of danger or not. And then make present insurance price according to the future uncertain result. The Insurance Pricing just follows the meaning of Backward Stochastic Differential Equation. Insurance Pricing itself is also a research field sprang up in past scores of years, because insurance pricing is the indisputable core of insurance work, and gets quite a few researchers' attention. This article adopts backward stochastic differential equation theory and do research on problem about technology insurance pricing.展开更多
In this paper,we prove an existence and uniqueness theorem for backward doubly stochastic differential equations under a new kind of stochastic non-Lipschitz condition which involves stochastic and timedependent condi...In this paper,we prove an existence and uniqueness theorem for backward doubly stochastic differential equations under a new kind of stochastic non-Lipschitz condition which involves stochastic and timedependent condition.As an application,we use the result to obtain the existence of stochastic viscosity solution for some nonlinear stochastic partial differential equations under stochastic non-Lipschitz conditions.展开更多
In this paper, we prove that a kind of second order stochastic differential op- erator can be represented by the limit of solutions of BSDEs with uniformly continuous coefficients. This result is a generalization of t...In this paper, we prove that a kind of second order stochastic differential op- erator can be represented by the limit of solutions of BSDEs with uniformly continuous coefficients. This result is a generalization of the representation for the uniformly continuous generator. With the help of this representation, we obtain the corresponding converse comparison theorem for the BSDEs with uniformly continuous coefficients, and get some equivalent relationships between the properties of the generator g and the associated solutions of BSDEs. Moreover, we give a new proof about g-convexity.展开更多
In this paper, the theory of stochastic differential utility is studied. Sufficient conditions for existence, uniqueness, continuity, monotonicity, time consistency, risk aversion and concavity are gived under non-Li...In this paper, the theory of stochastic differential utility is studied. Sufficient conditions for existence, uniqueness, continuity, monotonicity, time consistency, risk aversion and concavity are gived under non-Lipschtz assumptions.展开更多
In this paper,a stochastic linear two-step scheme has been presented to approximate backward stochastic differential equations(BSDEs).A necessary and sufficient condition is given to judge the L 2-stability of our num...In this paper,a stochastic linear two-step scheme has been presented to approximate backward stochastic differential equations(BSDEs).A necessary and sufficient condition is given to judge the L 2-stability of our numerical schemes.This stochastic linear two-step method possesses a family of 3-order convergence schemes in the sense of strong stability.The coefficients in the numerical methods are inferred based on the constraints of strong stability and n-order accuracy(n∈N^(+)).Numerical experiments illustrate that the scheme is an efficient probabilistic numerical method.展开更多
In this paper,we explore a new approach to design and analyze numerical schemes for backward stochastic differential equations(BSDEs).By the nonlinear Feynman-Kac formula,we reformulate the BSDE into a pair of referen...In this paper,we explore a new approach to design and analyze numerical schemes for backward stochastic differential equations(BSDEs).By the nonlinear Feynman-Kac formula,we reformulate the BSDE into a pair of reference ordinary differential equations(ODEs),which can be directly discretized by many standard ODE solvers,yielding the corresponding numerical schemes for BSDEs.In particular,by applying strong stability preserving(SSP)time discretizations to the reference ODEs,we can propose new SSP multistep schemes for BSDEs.Theoretical analyses are rigorously performed to prove the consistency,stability and convergency of the proposed SSP multistep schemes.Numerical experiments are further carried out to verify our theoretical results and the capacity of the proposed SSP multistep schemes for solving complex associated problems.展开更多
In this work,by combining the multistep discretization in time and the Sinc quadrature rule for approximating the conditional mathematical expectations,we will propose new fully discrete multistep schemes called“Sinc...In this work,by combining the multistep discretization in time and the Sinc quadrature rule for approximating the conditional mathematical expectations,we will propose new fully discrete multistep schemes called“Sinc-multistep schemes”for forward backward stochastic differential equations(FBSDEs).The schemes avoid spatial interpolations and admit high order of convergence.The stability and the K-th order error estimates in time for the K-step Sinc multistep schemes are theoretically proved(1≤K≤6).This seems to be the first time for analyzing fully time-space discrete multistep schemes for FBSDEs.Numerical examples are also presented to demonstrate the effectiveness,stability,and high order of convergence of the proposed schemes.展开更多
A necessary maximum principle is given for nonzero-sum stochastic Oltterential games with random jumps. The result is applied to solve the H2/H∞ control problem of stochastic systems with random jumps. A necessary an...A necessary maximum principle is given for nonzero-sum stochastic Oltterential games with random jumps. The result is applied to solve the H2/H∞ control problem of stochastic systems with random jumps. A necessary and sufficient condition for the existence of a unique solution to the H2/H∞ control problem is derived. The resulting solution is given by the solution of an uncontrolled forward backward stochastic differential equation with random jumps.展开更多
基金supported in part by theNSFC(11871037)Shandong Province(JQ201202)+3 种基金NSFC-RS(11661130148NA150344)111 Project(B12023)supported by the Qingdao Postdoctoral Application Research Project(QDBSH20220202092)。
文摘In this paper we consider general coupled mean-field reflected forward-backward stochastic differential equations(FBSDEs),whose coefficients not only depend on the solution but also on the law of the solution.The first part of the paper is devoted to the existence and the uniqueness of solutions for such general mean-field reflected backward stochastic differential equations(BSDEs)under Lipschitz conditions,and for the one-dimensional case a comparison theorem is studied.With the help of this comparison result,we prove the existence of the solution for our mean-field reflected forward-backward stochastic differential equation under continuity assumptions.It should be mentioned that,under appropriate assumptions,we prove the uniqueness of this solution as well as that of a comparison theorem for mean-field reflected FBSDEs in a non-trivial manner.
基金the National Natural Science Foundation(10371067)the National Basic Research Program of China(973 Program,2007CB814904)+2 种基金the Natural Science Foundation of Shandong Province(Z2006A01)the Doctoral Fund of Education Ministry of China,and Youth Growth Foundation of Shandong University at Weihai, P.R.China. Xiao acknowledges the Natural Science Foundation of Shandong Province (ZR2009AQ017)Independent Innovation Foundation of Shandong University,IIFSDU
文摘In this article, we study the multi-dimensional reflected backward stochastic differential equations. The existence and uniqueness result of the solution for this kind of equation is proved by the fixed point argument where every element of the solution is forced to stay above the given stochastic process, i.e., multi-dimensional obstacle, respectively. We also give a kind of multi-dimensional comparison theorem for the reflected BSDE and then use it as the tool to prove an existence result for the multi-dimensional reflected BSDE where the coefficient is continuous and has linear growth.
文摘The existence and uniqueness of solutions to backward stochastic differential equations with jumps and with unbounded stopping time as terminal under the non_Lipschitz condition are obtained. The convergence of solutions and the continuous dependence of solutions on parameters are also derived. Then the probabilistic interpretation of solutions to some kinds of quasi_linear elliptic type integro_differential equations is obtained.
文摘The article first studies the fully coupled Forward-Backward Stochastic Differential Equations (FBSDEs) with the continuous local martingale. The article is mainly divided into two parts. In the first part, it considers Backward Stochastic Differential Equations (BSDEs) with the continuous local martingale. Then, on the basis of it, in the second part it considers the fully coupled FBSDEs with the continuous local martingale. It is proved that their solutions exist and are unique under the monotonicity conditions.
基金National Natural Science Foundation of China ( No. 11171062 ) Natural Science Foundation for the Youth,China ( No.11101077) Innovation Program of Shanghai Municipal Education Commission,China ( No. 12ZZ063)
文摘One existence integral condition was obtained for the adapted solution of the general backward stochastic differential equations(BSDEs). Then by solving the integral constraint condition, and using a limit procedure, a new approach method is proposed and the existence of the solution was proved for the BSDEs if the diffusion coefficients satisfy the locally Lipschitz condition. In the special case the solution was a Brownian bridge. The uniqueness is also considered in the meaning of "F0-integrable equivalent class" . The new approach method would give us an efficient way to control the main object instead of the "noise".
基金The NSF(10671112)of ChinaNational Basic Research Program(973 Program)(2007CB814904)of Chinathe NSF(Z2006A01)of Shandong Province and the Chinese New Century Young Teachers Program
文摘In this paper, we use the solutions of forward-backward stochastic differential equations to get the optimal control for backward stochastic linear quadratic optimal control problem. And we also give the linear feedback regulator for the optimal control problem by using the solutions of a group of Riccati equations.
文摘The comparison theorems of solutions for BSDEs in fully coupled forward-backward stochastic differential equations (FBSDEs) are studied in this paper, here in the fully coupled FBSDEs the forward SDEs are the same structure.
文摘In this paper, we propose a new second order numerical scheme for solving backward stochastic differential equations with jumps with the generator linearly depending on . And we theoretically prove that the convergence rates of them are of second order for solving and of first order for solving and in norm.
基金Supported by National Natural Science Foundation of China(71171003,71210107026)Anhui Natural Science Foundation(10040606003)Anhui Natural Science Foundation of Universities(KJ2012B019,KJ2013B023)
文摘This paper is concerned with a class of uncertain backward stochastic differential equations (UBSDEs) driven by both an m-dimensional Brownian motion and a d-dimensional canonical process with uniform Lipschitzian coefficients. Such equations can be useful in mod- elling hybrid systems, where the phenomena are simultaneously subjected to two kinds of un- certainties: randomness and uncertainty. The solutions of UBSDEs are the uncertain stochastic processes. Thus, the existence and uniqueness of solutions to UBSDEs with Lipschitzian coeffi- cients are proved.
基金Foundation item: Supported by the'Natured Science Foundation of the Edudation Department of Jiangsu Province(06KJD110092)
文摘In this article, we first introduce g-expectation via the solution of backward stochastic differential equation(BSDE in short) with non-Lipschitz coefficient, and give the properties of g-expectation, then we establish a general converse comparison theorem for backward stochastic differential equation with non-Lipschitz coefficient.
基金Supported by Science and Technology Development Foundation of Shanghai Education Commission(No.02JG05044)
文摘For Duffle-Epstein type Backward Stochastic Differential Equations, the comparison theorem is proved. Based on the comparison theorem, by monotone iterative technique, the existence of the minimal and maximal solutions of the equations are proved.
文摘The development of Backward Stochastic Differential Equation Theory is just a thing happened in the past years. Although its development and application is far behind Forward Stochastic Differential Equation, its wide application prospect on financial mathematics gets more and more attention. The meaning of Backward Stochastic Differential Equation is that change a already-known final (usually uncertain) goal into a present certain answer to make a present resolution. But Insurance Pricing happens to know the final result, it' s certain that the result is uncertain, that is to say, to get out of danger or not. And then make present insurance price according to the future uncertain result. The Insurance Pricing just follows the meaning of Backward Stochastic Differential Equation. Insurance Pricing itself is also a research field sprang up in past scores of years, because insurance pricing is the indisputable core of insurance work, and gets quite a few researchers' attention. This article adopts backward stochastic differential equation theory and do research on problem about technology insurance pricing.
基金supported by Beijing Natural Science Foundation(No.1222004)Yuyou Project of North University of Technology(No.207051360020XN140/007)Scientific Research Foundation of North University of Technology(No.110051360002)。
文摘In this paper,we prove an existence and uniqueness theorem for backward doubly stochastic differential equations under a new kind of stochastic non-Lipschitz condition which involves stochastic and timedependent condition.As an application,we use the result to obtain the existence of stochastic viscosity solution for some nonlinear stochastic partial differential equations under stochastic non-Lipschitz conditions.
基金the partial support from the NSF of China(11171186)the NSF of Shandong Province(ZR2010AM021)the "111" project
文摘In this paper, we prove that a kind of second order stochastic differential op- erator can be represented by the limit of solutions of BSDEs with uniformly continuous coefficients. This result is a generalization of the representation for the uniformly continuous generator. With the help of this representation, we obtain the corresponding converse comparison theorem for the BSDEs with uniformly continuous coefficients, and get some equivalent relationships between the properties of the generator g and the associated solutions of BSDEs. Moreover, we give a new proof about g-convexity.
文摘In this paper, the theory of stochastic differential utility is studied. Sufficient conditions for existence, uniqueness, continuity, monotonicity, time consistency, risk aversion and concavity are gived under non-Lipschtz assumptions.
基金supported by the National Natural Science of China No.11971263,11871458Shandong Provincial Natural Science Foundation No.ZR2019ZD41National Key R&D Program of China No.2018YFA0703900。
文摘In this paper,a stochastic linear two-step scheme has been presented to approximate backward stochastic differential equations(BSDEs).A necessary and sufficient condition is given to judge the L 2-stability of our numerical schemes.This stochastic linear two-step method possesses a family of 3-order convergence schemes in the sense of strong stability.The coefficients in the numerical methods are inferred based on the constraints of strong stability and n-order accuracy(n∈N^(+)).Numerical experiments illustrate that the scheme is an efficient probabilistic numerical method.
基金supported by the National Natural Science Foundations of China(Grant Nos.12071261,11831010)the National Key R&D Program(Grant No.2018YFA0703900).
文摘In this paper,we explore a new approach to design and analyze numerical schemes for backward stochastic differential equations(BSDEs).By the nonlinear Feynman-Kac formula,we reformulate the BSDE into a pair of reference ordinary differential equations(ODEs),which can be directly discretized by many standard ODE solvers,yielding the corresponding numerical schemes for BSDEs.In particular,by applying strong stability preserving(SSP)time discretizations to the reference ODEs,we can propose new SSP multistep schemes for BSDEs.Theoretical analyses are rigorously performed to prove the consistency,stability and convergency of the proposed SSP multistep schemes.Numerical experiments are further carried out to verify our theoretical results and the capacity of the proposed SSP multistep schemes for solving complex associated problems.
基金This work was partially supported by the science challenge project(No.TZ2018001)the national natural science foundation of China(Nos.12071261,11831010 and 11871068)+1 种基金the national key basic research program(No.2018YFA0703900)The authors would like to thank the referees for the helpful comments on the improvement of the present paper.
文摘In this work,by combining the multistep discretization in time and the Sinc quadrature rule for approximating the conditional mathematical expectations,we will propose new fully discrete multistep schemes called“Sinc-multistep schemes”for forward backward stochastic differential equations(FBSDEs).The schemes avoid spatial interpolations and admit high order of convergence.The stability and the K-th order error estimates in time for the K-step Sinc multistep schemes are theoretically proved(1≤K≤6).This seems to be the first time for analyzing fully time-space discrete multistep schemes for FBSDEs.Numerical examples are also presented to demonstrate the effectiveness,stability,and high order of convergence of the proposed schemes.
基金supported by the Doctoral foundation of University of Jinan(XBS1213)the National Natural Science Foundation of China(11101242)
文摘A necessary maximum principle is given for nonzero-sum stochastic Oltterential games with random jumps. The result is applied to solve the H2/H∞ control problem of stochastic systems with random jumps. A necessary and sufficient condition for the existence of a unique solution to the H2/H∞ control problem is derived. The resulting solution is given by the solution of an uncontrolled forward backward stochastic differential equation with random jumps.