Reclamation of clean water from filter backwash water was studied through pilot-scale experiments.The pilot plant consisted of clarification,sand-filtration,and ultrafiltration modules in sequence,with a provision to ...Reclamation of clean water from filter backwash water was studied through pilot-scale experiments.The pilot plant consisted of clarification,sand-filtration,and ultrafiltration modules in sequence,with a provision to bypass the sand filter.Clean water that conformed to World Health Organization (WHO) guidelines on Potable Quality was reclaimed.Turbidity,aluminum and iron were found to be critical contaminants in process selection and design.Clarification,followed by sand filtration,was found to be the minim...展开更多
To lower the costs of wastewater treatment, the submerged hollow fiber ultrafiltration membrane was employed to reuse the filter backwash water and settling tank sludge water. Experimental study indicates that the sub...To lower the costs of wastewater treatment, the submerged hollow fiber ultrafiltration membrane was employed to reuse the filter backwash water and settling tank sludge water. Experimental study indicates that the submerged hollow fiber uhrafihration membrane can condense the concentration of sludge from 0. 1% -0. 3% to 2.5%. At 20 ℃, the system can operate continuously for 80 clays with daily online backwashing with chemical additions only once, and the membrane flux can be recovered up to 97% by using NaClO and NaOH as chemical additions. The results show that the membrane flux is mainly affected by temperature,and has a positive lin- ear relation to temperature with a slope of 0. 368. After treated by submerged hollow fiber uhrafihration membrane, the effluent can reach the National Standard for Drinking Water( GB5749 -85 ) , especially for the sludge water from sedimentation tanks and the backwashing Water from filters in water supply plants.展开更多
Based on the fact that recycling of combined filter backwash water(CFBW)directly to drinking water treatment plants(WTP)is considered to be a feasible method to enhance pollutant removal efficiency,we were motivat...Based on the fact that recycling of combined filter backwash water(CFBW)directly to drinking water treatment plants(WTP)is considered to be a feasible method to enhance pollutant removal efficiency,we were motivated to evaluate the genotoxicity of water samples from two pilot-scale drinking water treatment systems,one with recycling of combined backwash water,the other one with a conventional process.An integrated approach of the comet and micronucleus(MN)assays was used with zebrafish(Danio rerio)to investigate the water genotoxicity in this study.The total organic carbon(TOC),dissolved organic carbon(DOC),and trihalomethane formation potential(THMFP),of the recycling process were lower than that of the conventional process.All the results showed that there was no statistically significant difference(P〉0.05)between the conventional and recycling processes,and indicated that the genotoxicity of water samples from the recycling process did not accumulate in 15 day continuous recycling trial.It was worth noting that there was correlation between the concentrations of TOC,DOC,UV(254),and THMFPs in water and the DNA damage score,with corresponding R^2 values of 0.68,0.63,0.28,and 0.64.Nevertheless,both DNA strand breaks and MN frequency of all water samples after disinfection were higher than that of water samples from the two treatment units,which meant that the disinfection by-products(DBPs)formed by disinfection could increase the DNA damage.Both the comet and MN tests suggest that the recycling process did not increase the genotoxicity risk,compared to the traditional process.展开更多
文摘Reclamation of clean water from filter backwash water was studied through pilot-scale experiments.The pilot plant consisted of clarification,sand-filtration,and ultrafiltration modules in sequence,with a provision to bypass the sand filter.Clean water that conformed to World Health Organization (WHO) guidelines on Potable Quality was reclaimed.Turbidity,aluminum and iron were found to be critical contaminants in process selection and design.Clarification,followed by sand filtration,was found to be the minim...
基金the National High Technology Research and Development Program of China(Grant No.2004AA601020)
文摘To lower the costs of wastewater treatment, the submerged hollow fiber ultrafiltration membrane was employed to reuse the filter backwash water and settling tank sludge water. Experimental study indicates that the submerged hollow fiber uhrafihration membrane can condense the concentration of sludge from 0. 1% -0. 3% to 2.5%. At 20 ℃, the system can operate continuously for 80 clays with daily online backwashing with chemical additions only once, and the membrane flux can be recovered up to 97% by using NaClO and NaOH as chemical additions. The results show that the membrane flux is mainly affected by temperature,and has a positive lin- ear relation to temperature with a slope of 0. 368. After treated by submerged hollow fiber uhrafihration membrane, the effluent can reach the National Standard for Drinking Water( GB5749 -85 ) , especially for the sludge water from sedimentation tanks and the backwashing Water from filters in water supply plants.
基金supported by the Major Science and Technology Program for Water Pollution Control and Treatment(Nos.2012ZX07408001,2014ZX07405002)the National Natural Science Foundation of China(No.51108118)the State Key Laboratory of Urban Water Resource and Environment(No.2013DX12)
文摘Based on the fact that recycling of combined filter backwash water(CFBW)directly to drinking water treatment plants(WTP)is considered to be a feasible method to enhance pollutant removal efficiency,we were motivated to evaluate the genotoxicity of water samples from two pilot-scale drinking water treatment systems,one with recycling of combined backwash water,the other one with a conventional process.An integrated approach of the comet and micronucleus(MN)assays was used with zebrafish(Danio rerio)to investigate the water genotoxicity in this study.The total organic carbon(TOC),dissolved organic carbon(DOC),and trihalomethane formation potential(THMFP),of the recycling process were lower than that of the conventional process.All the results showed that there was no statistically significant difference(P〉0.05)between the conventional and recycling processes,and indicated that the genotoxicity of water samples from the recycling process did not accumulate in 15 day continuous recycling trial.It was worth noting that there was correlation between the concentrations of TOC,DOC,UV(254),and THMFPs in water and the DNA damage score,with corresponding R^2 values of 0.68,0.63,0.28,and 0.64.Nevertheless,both DNA strand breaks and MN frequency of all water samples after disinfection were higher than that of water samples from the two treatment units,which meant that the disinfection by-products(DBPs)formed by disinfection could increase the DNA damage.Both the comet and MN tests suggest that the recycling process did not increase the genotoxicity risk,compared to the traditional process.