Chilled chicken is inevitably contaminated by microorganisms during slaughtering and processing,resulting in spoilage.Cutting parts of chilled chicken,especially wings,feet,and other skin-on products,are abundant in c...Chilled chicken is inevitably contaminated by microorganisms during slaughtering and processing,resulting in spoilage.Cutting parts of chilled chicken,especially wings,feet,and other skin-on products,are abundant in collagen,which may be the primary target for degradation by spoilage microorganisms.In this work,a total of 17 isolates of spoilage bacteria that could secrete both collagenase and lipase were determined by raw-chicken juice agar(RJA)method,and the results showed that 7 strains of Serratia,Aeromonas,and Pseudomonas could significantly decompose the collagen ingredients.The gelatin zymography showed that Serratia liquefaciens(F5)and(G7)had apparent degradation bands around 50 kDa,and Aeromonas veronii(G8)and Aeromonas salmonicida(H8)had a band around.65 and 95 kDa,respectively.The lipase and collagenase activities were detected isolate-by-isolate,with F5 showing the highest collagenase activity.For spoilage ability on meat in situ,F5 performed strongest in spoilage ability,indicated by the total viable counts,total volatile basic nitrogen content,sensory scores,lipase,and collagenase activity.This study provides a theoretical basis for spoilage heterogeneity of strains with high-producing collagenase in meat.展开更多
Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific micr...Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific microorganisms,enabling the early diagnosis of infections and the timely implementation of tar-geted therapy.However,complex matrices only contain trace levels of VOCs,and their constituent com-ponents can hinder determination of these compounds.Therefore,modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed.In this paper,we discuss bacterial VOC analysis under in vitro conditions,in animal models and disease diagnosis in humans,including techniques for offline and online analysis in clinical settings.We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis,in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species in-teractions,the kinetics of VOC metabolism,and species-and drug-resistance specificity.展开更多
The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,an...The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application.展开更多
Non-alcoholic fatty liver disease(NAFLD)encompasses a spectrum of liver disorders of varying severity,ultimately leading to fibrosis.This spectrum primarily consists of NAFL and non-alcoholic steatohepatitis.The patho...Non-alcoholic fatty liver disease(NAFLD)encompasses a spectrum of liver disorders of varying severity,ultimately leading to fibrosis.This spectrum primarily consists of NAFL and non-alcoholic steatohepatitis.The pathogenesis of NAFLD is closely associated with disturbances in the gut micr-obiota and impairment of the intestinal barrier.Non-gut commensal flora,particularly bacteria,play a pivotal role in the progression of NAFLD.Notably,Porphyromonas gingivalis,a principal bacterium involved in periodontitis,is known to facilitate lipid accumulation,augment immune responses,and induce insulin resistance,thereby exacerbating fibrosis in cases of periodontitis-associated NAFLD.The influence of oral microbiota on NAFLD via the“oral-gut-liver”axis is gaining recognition,offering a novel perspective for NAFLD management through microbial imbalance correction.This review endeavors to encapsulate the intricate roles of oral bacteria in NAFLD and explore underlying mechanisms,emphasizing microbial control strategies as a viable therapeutic avenue for NAFLD.展开更多
In addition to their visible motion such as swimming(e.g.,with the help offlagella),bacteria can also exhibit nanomotion that is detectable only with highly sensitive instruments,and this study shows that it is possibl...In addition to their visible motion such as swimming(e.g.,with the help offlagella),bacteria can also exhibit nanomotion that is detectable only with highly sensitive instruments,and this study shows that it is possible to detect bacterial nanomotion using an AFM detection system.The results show that the nanomotion characteristics depend on the bacterial strain,and that nanomotion can be used to sense the metabolic activity of bacteria because the oscillations are sensitive to the food preferences of the bacteria and the type of surrounding medium.展开更多
Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the ba...Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the bacterial community modifications are poorly understood. Here, six soybean(Glycine max) genotypes with differences in P efficiency were cultivated in acidic soils with long-term sufficient or deficient P-fertilizer treatments. The acid phosphatase(AcP) activities, organic-P concentrations and associated bacterial community compositions were determined in bulk and rhizosphere soils. The results showed that both soybean plant P content and the soil AcP activity were negatively correlated with soil organic-P concentration in P-deficient acidic soils. Soil P-availability affected the ɑ-diversity of bacteria in both bulk and rhizosphere soils. However, soybean had a stronger effect on the bacterial community composition, as reflected by the similar biomarker bacteria in the rhizosphere soils in both P-treatments. The relative abundance of biomarker bacteria Proteobacteria was strongly correlated with soil organic-P concentration and AcP activity in low-P treatments. Further high-throughput sequencing of the phoC gene revealed an obvious shift in Proteobacteria groups between bulk soils and rhizosphere soils, which was emphasized by the higher relative abundances of Cupriavidus and Klebsiella, and lower relative abundance of Xanthomonas in rhizosphere soils. Among them, Cupriavidus was the dominant phoC bacterial genus, and it was negatively correlated with the soil organic-P concentration. These findings suggest that soybean growth relies on organic-P mineralization in P-deficient acidic soils, which might be partially achieved by recruiting specific phoCharboring bacteria, such as Cupriavidus.展开更多
Probiotics are live microbial food supplements that have been shown to have beneficial effects on animal health.Endogenous probiotic bacteria have long been used for their proposed health promoting properties and have...Probiotics are live microbial food supplements that have been shown to have beneficial effects on animal health.Endogenous probiotic bacteria have long been used for their proposed health promoting properties and have become a hot research topic in growth improvement in aquaculture.The endogenous probiotic bacteria from intestines of Macrobrachium rosenbergii(giant river prawn)was explored for their probiotic potential,from which 367 bacterial strains were isolated from the intestine of M.rosenbergii.After 16 S rDNA sequence analysis,234 isolates were identified as Lactococcus garvieae,which accounted for 63.76%of the total number of culturable intestinal bacteria,suggesting that this bacterium was the main component of the microbiota.Furthermore,to reveal the probiotic properties of L.garvieae,this isolated bacterial strain was characterized morphologically,physiologically,and biochemically.Its enzyme production capacity,bacteriostatic activity,and resistance to acid,high temperature,and pH,were assessed.In vitro experiments showed that the L.garvieae(No.C 6 a 2)had a fast growth rate and entered the logarithmic phase rapidly.Besides,it had characteristics of acid-production and resistance,enzyme-producing capacity,and strong antibacterial activity against pathogenic Staphylococc us aureus,Aeromonas hydrophila,and Aeromonas veronii.However,it lacked the ability to tolerate high temperature.Our results provide novel data to deepen our understanding of the intestinal bacteria structure of M.rosenbergii and valuable information for probiotic screening and the application for M.rosenbergii.展开更多
A two-year field experiment conducted under dryland conditions in semi-humid and drought-prone regions of China aimed to assess the effect of ammonia-oxidizing bacterial on maize water use efficiency and yield.A heter...A two-year field experiment conducted under dryland conditions in semi-humid and drought-prone regions of China aimed to assess the effect of ammonia-oxidizing bacterial on maize water use efficiency and yield.A heterotrophic ammonia-oxidizing bacteria(HAOB)strain S2_8_1 was used.Six treatments were applied:(1)no irrigation+HAOB strain(DI),(2)no irrigation+blank culture medium(DM),(3)no irrigation control(DCK),(4)irrigation+HAOB(WI),(5)irrigation+blank culture medium(WM),and(6)irrigation control(WCK).Results revealed that HAOB treatment increased maize growth,yield,and water use efficiency over controls,regardless of whether the year was wet or dry.This improvement was attributed to the accelerated nitrification in the rhizosphere soil due to HAOB inoculation,which subsequently led to increased levels of leaf cytokinins.Overall,these findings suggest that HAOB inoculation holds promise as a strategy to boost water use efficiency and maize productivity in dryland agriculture.展开更多
Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil env...Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence.展开更多
Profiling the protein composition of bacteria is essential for understanding their biology,physiology and interaction with environment.Mass spectrometry has become a pivotal tool for protein analysis,facilitating the ...Profiling the protein composition of bacteria is essential for understanding their biology,physiology and interaction with environment.Mass spectrometry has become a pivotal tool for protein analysis,facilitating the examination of expression levels,molecular masses and structural modifications.In this study,we compared the performance of three widely-used mass spectrometry methods,i.e.,matrix-assisted laser desorption/ionization(MALDI)protein fingerprinting,top-down proteomics and bottom-up proteomics,in the profiling of bacterial protein composition.It was revealed that bottom-up proteomics provided the highest protein coverage and exhibited the greatest protein profile overlap between bacterial species.In contrast,MALDI protein fingerprinting demonstrated superior detection reproducibility and effectiveness in distinguishing between bacterial species.Although top-down proteomics identified fewer proteins than bottom-up approach,it complemented MALDI fingerprinting in the discovery of bacterial protein markers,both favoring abundant,stable,and hydrophilic bacterial ribosomal proteins.This study represents the most systematic and comprehensive comparison of mass spectrometry-based protein profiling methodologies to date.It provides valuable guidelines for the selection of appropriate profiling strategies for specific analytical purposes.This will facilitate studies across various fields,including infection diagnosis,antimicrobial resistance detection and pharmaceutical target discovery.展开更多
The effects of the co-inoculation of Debaryomyces hansenii separately with 3 lactic acid bacteria(LAB),Lactobacillus sakei,Lactobacillus plantarum and Lactobacillus curvatus,on the taste and odour profi les of dry sau...The effects of the co-inoculation of Debaryomyces hansenii separately with 3 lactic acid bacteria(LAB),Lactobacillus sakei,Lactobacillus plantarum and Lactobacillus curvatus,on the taste and odour profi les of dry sausages were investigated.The co-inoculated sausages showed higher free amino acid and organic acid contents than the non-inoculated control and sausages inoculated with D.hansenii alone.Meanwhile,the sausages inoculated with D.hansenii+L.plantarum,D.hansenii+L.sakei and D.hansenii+L.curvatus had the highest contents of aldehydes,esters and alcohols,respectively.The results of electronic tongue,electronic nose and sensory evaluation demonstrated that compared with the sausage inoculated with D.hansenii,the sour taste and fl oral odour increased and the fatty odour decreased in the sausage inoculated with D.hansenii+L.sakei;this was more favourable for the development of a desirable fl avour in sausages.Moreover,the partial least squares regression analysis indicated that 10 taste and 33 odour compounds were mainly responsible for the differences in the flavour profiles among the sausages.Overall,these findings contributed to a more comprehensive understanding of the formation of sensory characteristics in dry sausages co-inoculated with yeast and LAB.展开更多
A novel compound(H_(2)L)SCN(5⁃methyl⁃3⁃phenyl⁃2H⁃pyrazol⁃1⁃ium thiocyanate)has been obtained by the reaction of thiosemicarbazide with benzoylacetone in ethanol.Two zinccomplexes[Zn(HL)_(2)(NCS)(CH_(3)COO)](1)and[Zn_(...A novel compound(H_(2)L)SCN(5⁃methyl⁃3⁃phenyl⁃2H⁃pyrazol⁃1⁃ium thiocyanate)has been obtained by the reaction of thiosemicarbazide with benzoylacetone in ethanol.Two zinccomplexes[Zn(HL)_(2)(NCS)(CH_(3)COO)](1)and[Zn_(2)(L)_(2)(HL)_(2)(NCS)_(2)]_(2)·2CH_(3)OH(2)have been synthesized by the coordination reactions of Zn(OAc)_(2)·2H_(2)O or ZnCl_(2)with(H_(2)L)SCN under reflux conditions.Elemental analyses and single⁃crystal X⁃ray diffraction have con⁃firmed the structures of the synthesized compounds.The(H_(2)L)SCN ligand and complex 1 pertain to the triclinic sys⁃tem with space group P1,while complex 2 belongs to the monoclinic system with space group P2_(1)/n.Additionally,the antibacterial activities of the compounds were evaluated in vitro using the agar diffusion method against the bac⁃terial strains(Candida albicans,Staphylococcus aureus,and Escherichia coli).The results showed that the ligand exhibited relatively good antibacterial activities against the bacteria,and the complexes possessed stronger antibac⁃terial activities against the same bacteria than the free ligand.CCDC:2190252,(H2L)SCN;2190253,1;2190256,2.展开更多
AIM:To investigate the types of bacteria in patients with eye infections in Suzhou and their drug resistance to commonly used antibacterial drugs.METHODS:The clinical data of 155 patients were retrospectively collecte...AIM:To investigate the types of bacteria in patients with eye infections in Suzhou and their drug resistance to commonly used antibacterial drugs.METHODS:The clinical data of 155 patients were retrospectively collected in this study,and the pathogenic bacteria species and drug resistance of each pathogenic bacteria were analyzed.RESULTS:Among the 155 patients(age from 12 to 87 years old,with an average age of 57,99 males and 56 females)with eye infections(160 eyes:74 in the left eye,76 in the right eye and 5 in both eyes,all of which were exogenous),71(45.81%)strains were gram-positive bacteria,23(14.84%)strains were gram-negative bacteria and 61(39.35%)strains were fungi.Gram-positive bacteria were highly resistant to penicillin and erythromycin(78.87%and 46.48%respectively),but least resistant to vancomycin at 0.Gram-negative bacteria were highly resistant to cefoxitin and compound sulfamethoxazole(100%and 95.65%respectively),but least resistant to meropenem at 0.Comparison of the resistance of gram-positive and gram-negative bacteria to some drugs revealed statistically significant differences(P<0.05)in the resistance of both to cefoxitin,cotrimoxazole,levofloxacin,cefuroxime,ceftriaxone and ceftazidime,and both had higher rates of resistance to gram-negative bacteria than to gram-positive bacteria.The distribution of bacterial infection strains showed that Staphylococcus epidermidis was the most common strain in the conjunctiva,cornea,aqueous humor or vitreous body and other eye parts.Besides,Fusarium and Pseudomonas aeruginosa were also among the most common strains of conjunctival and corneal infections.CONCLUSION:Gram-positive bacteria are the dominant bacteria in eye infections,followed by gram-negative bacteria and fungi.Considering the resistance of gramnegative bacteria to multiple drugs,monitoring of bacteria should be strengthened in eye bacterial infections for effective prevention and control to reduce complications caused by eye infections.展开更多
Food allergy as a global health problem threatens food industry.Bee pollen(BP)is a typical food with allergenic potentials,although it performs various nutritional/pharmacological functions to humans.In this study,lac...Food allergy as a global health problem threatens food industry.Bee pollen(BP)is a typical food with allergenic potentials,although it performs various nutritional/pharmacological functions to humans.In this study,lactic acid bacteria(LAB)were used to ferment Brassica napus BP for alleviating its allergenicity.Four novel allergens(glutaredoxin,oleosin-B2,catalase and lipase)were identified with significant decreases in LAB-fermented BP(FBP)than natural BP by proteomics.Meanwhile,metabolomics analysis showed significant increases of 28 characteristic oligopeptides and amino acids in FBP versus BP,indicating the degradation of LAB on allergens.Moreover,FBP showed alleviatory effects in BALB/c mice,which relieved pathological symptoms and lowered production of allergic mediators.Microbial high-throughput sequencing analysis showed that FBP could regulate gut microbiota and metabolism to strengthen immunity,which were closely correlated with the alleviation of allergic reactivity.These findings could contribute to the development and utilization of hypoallergenic BP products.展开更多
Rapeseed meal is a promising food ingredient, but its utilization is limited by the presence of some potentially harmful ingredients, such as glucosinolates. Fermentation is a cost-effective method of detoxication but...Rapeseed meal is a promising food ingredient, but its utilization is limited by the presence of some potentially harmful ingredients, such as glucosinolates. Fermentation is a cost-effective method of detoxication but a food-grade starter culture with glucosinolates degradation capacity is required. In this study, 46 strains of lactic acid bacteria from traditional paocai brines were screened for their ability to glucosinolate degradation. The results showed that more than 50% of the strains significantly degraded glucosinolates. Two strains of Lactiplantibacillus(p7 and s7) with high capacity of glucosinolates degradation through producing enzymes were identified. Then,an optimized condition for rapeseed meal fermentation by p7 was established to degrade glucosinolates, which can achieve about 80% degradation. UPLC/Q-TOF-MS analysis showed that the degradation rate of individual glucosinolates was different and the degradation rate of gluconapin and progoitrin in rapeseed meal can reach more than 90%. Meanwhile, fermentation with p7 can improve safety of rapeseed meal by inhibiting the growth of Enterobacteriaceae and improve its nutritional properties by degrading phytic acid. The in vitro digestion experiments showed that the content of glucosinolates in rapeseed meal decreased significantly during gastric digestion. Meanwhile, fermentation with p7 can greatly improve the release of soluble protein and increase the contents of free essential amino acids, such as lysine(increased by 12 folds) and methionine(increased by 10 folds).展开更多
This study aimed to examine the effects of inoculating Fritillaria taipaiensis P.Y.Li leaves with different strains ofpotassium-solubilizing bacteria (KSB), or combinations thereof, focusing on aspects of photosynthes...This study aimed to examine the effects of inoculating Fritillaria taipaiensis P.Y.Li leaves with different strains ofpotassium-solubilizing bacteria (KSB), or combinations thereof, focusing on aspects of photosynthesis and physiologicaland biochemical characteristics. At present, some studies have only studied the rhizosphere microbialcommunity characteristics of F. taipaiensis and have not discussed the effects of different microbial species on thegrowth promotion of F. taipaiensis. This paper will start from the perspective of potassium-solubilizing bacteria toconduct an in-depth study. Seed cultivation commenced at the base with three different KSBs in early October2022. The growth of F. taipaiensis leaves was observed after different treatments. Both single-plant and compoundinoculations were executed. A total of eight treatment groups were established, with aseptic fertilizer and sterilizedsoil functioning as the control group. The results reveal that intercellular CO_(2) concentration (Ci), stomatal conductance(Gs), and transpiration rate (Tr) were at their apex in the S7 group. Most treatment groups exhibited anincrease in leaf area, photosynthetic pigment content, soluble sugar, soluble protein, Superoxide Dismutase(SOD), Peroxidase (POD), Catalase (CAT) activities, and proline content. The expression levels of POD, SOD,and CAT genes were evaluated, following inoculation with different KSB. The highest was the S7 group. Theinoculation with various KSB, or combinations thereof, appears to bolster the growth and development of F. taipaiensis.The composite inoculation group S7, comprising Bacillus cereus, Burkholderia cepacia, and Bacillus subtilis,manifested the most favorable impact on the diverse indices of F. taipaiensis, thereby furnishing valuableinsights for the selection of bacterial fertilizer in the artificial cultivation of F. taipaiensis.展开更多
Infections caused by intracellular bacterial pathogens are difficult to treat since most antibiotics have low cell permeability and undergo rapid degradation within cells.The rapid development and dissemination of ant...Infections caused by intracellular bacterial pathogens are difficult to treat since most antibiotics have low cell permeability and undergo rapid degradation within cells.The rapid development and dissemination of antimicrobial–resistant strains have exacerbated this dilemma.With the increasing knowledge of host–pathogen interactions,especially bacterial strategies for survival and proliferation within host cells,host-directed therapy(HDT)has attracted increased interest and has emerged as a promising antiinfection method for treating intracellular infection.Herein,we applied a cell-based screening approach to a US Food and Drug Administration(FDA)-approved drug library to identify compounds that can inhibit the intracellular replication of Salmonella Typhimurium(S.Typhimurium).This screening allowed us to identify the antidiarrheal agent loperamide(LPD)as a potent inhibitor of S.Typhimurium intracellular proliferation.LPD treatment of infected cells markedly promoted the host autophagic response and lysosomal activity.A mechanistic study revealed that the increase in host autophagy and elimination of intracellular bacteria were dependent on the high expression of glycoprotein nonmetastatic melanoma protein B(GPNMB)induced by LPD.In addition,LPD treatment effectively protected against S.Typhimurium infection in Galleria mellonella and mouse models.Thus,our study suggested that LPD may be useful for the treatment of diseases caused by intracellular bacterial pathogens.Moreover,LPD may serve as a promising lead compound for the development of anti-infection drugs based on the HDT strategy.展开更多
Fritillaria taipaiensis P.Y.Li is a widely used medicinal herb in treating pulmonary diseases.In recent years,its wild resources have become scarce,and the demand for efficient artificial cultivation has significantly...Fritillaria taipaiensis P.Y.Li is a widely used medicinal herb in treating pulmonary diseases.In recent years,its wild resources have become scarce,and the demand for efficient artificial cultivation has significantly increased.This article is the first to apply phosphate solubilizing bacteria isolated from the rhizosphere soil of F.taipaiensis P.Y.Li to the cultivation process of F.taipaiensis P.Y.Li.The aim is to identify suitable reference strains for the artificial cultivation and industrial development of F.taipaiensis P.Y.Li by examining the effects of various phosphate solubilizing bacteria and their combinations on photosynthesis,physiological and biochemical properties,and gene expression related to the protective enzyme system in F.taipaiensis P.Y.Li.The experiment,conducted in pots at room temperature,included a control group(CK)and groups inoculated with inorganic phosphorussolubilizing bacteria:W1(Bacillus cereus),W2(Serratia plymuthica),W12(Bacillus cereus and Serratia plymuthica),and groups inoculated with organophosphorus-solubilizing bacteria:Y1(Bacillus cereus),Y2(Bacillus cereus),Y12(Bacillus cereus and Bacillus cereus),totaling seven groups.Compared to CK,most growth indices in the bacterial addition groups showed significant differences,with W12 achieving the highest values in all indices except the leaf area index.The content of photosynthetic pigments,photosynthetic parameters,and osmoregulatory substances increased variably in each bacterial treatment group.W12 exhibited the highest content of chlorophyll a and soluble protein,while W1 had the highest free proline content.The activities of peroxidase(POD),superoxide dismutase(SOD),and catalase(CAT)in all inoculated groups were higher than in CK,with significant changes in SOD and CAT activities.The malondialdehyde(MDA)content in all inoculated groups was lower than in CK,with Y12 being the lowest,at approximately 30%of CK.Gene expression corresponding to these three enzymes also increased variably,with POD expression in Y2 being the highest at 2.73 times that of CK.SOD and CAT expression in Y12 were the highest,at 1.84 and 4.39 times that of CK,respectively.These results indicate that inoculating phosphate solubilizing bacteria can enhance the growth of F.taipaiensis P.Y.Li,with the mixed inoculation groups W12 and Y12 demonstrating superior effects.This lays a theoretical foundation for selecting bacterial fertilizers in the cultivation process of F.taipaiensis P.Y.Li.展开更多
The rapid identification of lactic acid bacteria,which are essential microorganisms in the food industry,is of great significance for industrial applications.The identification of lactic acid bacteria traditionally re...The rapid identification of lactic acid bacteria,which are essential microorganisms in the food industry,is of great significance for industrial applications.The identification of lactic acid bacteria traditionally relies on the isolation and identification of pure colonies.While this method is well-established and widely used,it is not without limitations.The subjective judgment inherent in the isolation and purification process introduces potential for error,and the incomplete nature of the isolation process can result in the loss of valuable information.The advent of next generation sequencing has provided a novel approach to the rapid identification of lactic acid bacteria.This technology offers several advantages,including rapidity,accuracy,high throughput,and low cost.Next generation sequencing represents a significant advancement in the field of DNA sequencing.Its ability to rapidly and accurately identify lactic acid bacteria strains in samples with insufficient information or in the presence of multiple lactic acid bacteria sets it apart as a valuable tool.The application of this technology not only circumvents the potential errors inherent in the traditional method but also provides a robust foundation for the expeditious identification of lactic acid bacteria strains and the authentication of bacterial powder in industrial applications.This paper commences with an overview of traditional and molecular biology methods for the identification of lactic acid bacteria.While each method has its own advantages,they are not without limitations in practical application.Subsequently,the paper provides an introduction of the principle,process,advantages,and disadvantages of next generation sequencing,and also details its application in strain identification and rapid identification of lactic acid bacteria.The objective of this study is to provide a comprehensive and reliable basis for the rapid identification of industrial lactic acid bacteria strains and the authenticity identification of bacterial powder.展开更多
The aim of our study was to use a biosurfactant produced by Bacillus and Lactobacillus isolates as an antiseptic in the formulation of local soap. A total of 60 isolates were characterized by microbiological technique...The aim of our study was to use a biosurfactant produced by Bacillus and Lactobacillus isolates as an antiseptic in the formulation of local soap. A total of 60 isolates were characterized by microbiological techniques (30 Bacillus and 30 Lactobacillus) and the ability to produce biosurfactants was demonstrated by a hydrocarbon emulsification index (E24). The emulsification indexes (E24) varied from 9% to 100% for Bacillus and from 33% to 100% for Lactobacillus as well. The antagonistic assay showed that biosurfactants were able to inhibit the formation of biofilms and growth of pathogens such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Salmonella typhirium, Shigella boydii and Proteus mirabilis. The biosurfactant consortium (BioC) from Bacillus consortium and from Lactobacillus was able to inhibit biofilm formation and the pathogens growth. The BioC was stable to alkaline pH and the temperatures stability of Biosurfactant was ranging from 50°C to 90°C. The soap was made by the cold saponification process using one biosurfactant consortium formulated. This soap has a pH of 10 and showed good cleaning power and good foam stability. Similarly, the soap showed good antiseptic power and disinfection power against all pathogens tested. Handwashing is critical to preventing disease transmission. The persistence of pathogens in waste water was evaluated. The BioS produced showed good disinfection power against all pathogens tested. The valor of reduction on the hands and in the waste water was significantly more than compared to the control soaps used. This soap could be used in the prevention, fighting, and treatment of bacterial and viral infections.展开更多
基金financed by grants from the Natural Science Foundation of Jiangsu Province in China (BK20221515)the National Natural Science Foundation of China (32172266)。
文摘Chilled chicken is inevitably contaminated by microorganisms during slaughtering and processing,resulting in spoilage.Cutting parts of chilled chicken,especially wings,feet,and other skin-on products,are abundant in collagen,which may be the primary target for degradation by spoilage microorganisms.In this work,a total of 17 isolates of spoilage bacteria that could secrete both collagenase and lipase were determined by raw-chicken juice agar(RJA)method,and the results showed that 7 strains of Serratia,Aeromonas,and Pseudomonas could significantly decompose the collagen ingredients.The gelatin zymography showed that Serratia liquefaciens(F5)and(G7)had apparent degradation bands around 50 kDa,and Aeromonas veronii(G8)and Aeromonas salmonicida(H8)had a band around.65 and 95 kDa,respectively.The lipase and collagenase activities were detected isolate-by-isolate,with F5 showing the highest collagenase activity.For spoilage ability on meat in situ,F5 performed strongest in spoilage ability,indicated by the total viable counts,total volatile basic nitrogen content,sensory scores,lipase,and collagenase activity.This study provides a theoretical basis for spoilage heterogeneity of strains with high-producing collagenase in meat.
基金funded by the National Science Centre,Poland(Project No.:2017/26/D/NZ6/00136).
文摘Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific microorganisms,enabling the early diagnosis of infections and the timely implementation of tar-geted therapy.However,complex matrices only contain trace levels of VOCs,and their constituent com-ponents can hinder determination of these compounds.Therefore,modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed.In this paper,we discuss bacterial VOC analysis under in vitro conditions,in animal models and disease diagnosis in humans,including techniques for offline and online analysis in clinical settings.We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis,in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species in-teractions,the kinetics of VOC metabolism,and species-and drug-resistance specificity.
基金supported by the National Key Research and Development Program of China(2021YFD2100902-3)the National Natural Science Foundation of China(32072258)+5 种基金Major Science and Technology Program of Heilongjiang(2020ZX08B02)Harbin University of Commerce“Young Innovative Talents”Support Program(2019CX062020CX262020CX27)the Central Financial Support for the Development of Local Colleges and Universities,Graduate Innovation Research Project of Harbin University of Commerce(YJSCX2021-698HSD)Training plan of Young Innovative Talents in Universities of Heilongjiang(UNPYSCT-2020218).
文摘The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application.
文摘Non-alcoholic fatty liver disease(NAFLD)encompasses a spectrum of liver disorders of varying severity,ultimately leading to fibrosis.This spectrum primarily consists of NAFL and non-alcoholic steatohepatitis.The pathogenesis of NAFLD is closely associated with disturbances in the gut micr-obiota and impairment of the intestinal barrier.Non-gut commensal flora,particularly bacteria,play a pivotal role in the progression of NAFLD.Notably,Porphyromonas gingivalis,a principal bacterium involved in periodontitis,is known to facilitate lipid accumulation,augment immune responses,and induce insulin resistance,thereby exacerbating fibrosis in cases of periodontitis-associated NAFLD.The influence of oral microbiota on NAFLD via the“oral-gut-liver”axis is gaining recognition,offering a novel perspective for NAFLD management through microbial imbalance correction.This review endeavors to encapsulate the intricate roles of oral bacteria in NAFLD and explore underlying mechanisms,emphasizing microbial control strategies as a viable therapeutic avenue for NAFLD.
基金supported by the Russian Science Foundation(Grant No.22-14-20001).
文摘In addition to their visible motion such as swimming(e.g.,with the help offlagella),bacteria can also exhibit nanomotion that is detectable only with highly sensitive instruments,and this study shows that it is possible to detect bacterial nanomotion using an AFM detection system.The results show that the nanomotion characteristics depend on the bacterial strain,and that nanomotion can be used to sense the metabolic activity of bacteria because the oscillations are sensitive to the food preferences of the bacteria and the type of surrounding medium.
基金This work was supported by grants from the National Key Research and Development Program of China(2021YFF1000500)the Open Competition Program of Ten Major Directions of Agricultural Science and Technology Innovation for the 14th Five-Year Plan of Guangdong Province,China(2022SDZG07)+3 种基金the Key Areas Research and Development Programs of Guangdong Province,China(2022B0202060005)the STICGrantof China(SGDX20210823103535007)the Major Program of Guangdong Basic and Applied Research,China(2019B030302006)the Natural Science Foundation of Guangdong Province,China(2021A1515010826and 2020A1515110261).
文摘Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the bacterial community modifications are poorly understood. Here, six soybean(Glycine max) genotypes with differences in P efficiency were cultivated in acidic soils with long-term sufficient or deficient P-fertilizer treatments. The acid phosphatase(AcP) activities, organic-P concentrations and associated bacterial community compositions were determined in bulk and rhizosphere soils. The results showed that both soybean plant P content and the soil AcP activity were negatively correlated with soil organic-P concentration in P-deficient acidic soils. Soil P-availability affected the ɑ-diversity of bacteria in both bulk and rhizosphere soils. However, soybean had a stronger effect on the bacterial community composition, as reflected by the similar biomarker bacteria in the rhizosphere soils in both P-treatments. The relative abundance of biomarker bacteria Proteobacteria was strongly correlated with soil organic-P concentration and AcP activity in low-P treatments. Further high-throughput sequencing of the phoC gene revealed an obvious shift in Proteobacteria groups between bulk soils and rhizosphere soils, which was emphasized by the higher relative abundances of Cupriavidus and Klebsiella, and lower relative abundance of Xanthomonas in rhizosphere soils. Among them, Cupriavidus was the dominant phoC bacterial genus, and it was negatively correlated with the soil organic-P concentration. These findings suggest that soybean growth relies on organic-P mineralization in P-deficient acidic soils, which might be partially achieved by recruiting specific phoCharboring bacteria, such as Cupriavidus.
基金Supported by the National Natural Science Foundation of China(No.32273121)the Natural Science Foundation of Zhejiang Province(No.LGN22C190019)+1 种基金the Huzhou Natural Science Foundation(No.2021YZ08)the earmarked fund for the China Agriculture Research System of MOF and MARA(No.CARS-48)。
文摘Probiotics are live microbial food supplements that have been shown to have beneficial effects on animal health.Endogenous probiotic bacteria have long been used for their proposed health promoting properties and have become a hot research topic in growth improvement in aquaculture.The endogenous probiotic bacteria from intestines of Macrobrachium rosenbergii(giant river prawn)was explored for their probiotic potential,from which 367 bacterial strains were isolated from the intestine of M.rosenbergii.After 16 S rDNA sequence analysis,234 isolates were identified as Lactococcus garvieae,which accounted for 63.76%of the total number of culturable intestinal bacteria,suggesting that this bacterium was the main component of the microbiota.Furthermore,to reveal the probiotic properties of L.garvieae,this isolated bacterial strain was characterized morphologically,physiologically,and biochemically.Its enzyme production capacity,bacteriostatic activity,and resistance to acid,high temperature,and pH,were assessed.In vitro experiments showed that the L.garvieae(No.C 6 a 2)had a fast growth rate and entered the logarithmic phase rapidly.Besides,it had characteristics of acid-production and resistance,enzyme-producing capacity,and strong antibacterial activity against pathogenic Staphylococc us aureus,Aeromonas hydrophila,and Aeromonas veronii.However,it lacked the ability to tolerate high temperature.Our results provide novel data to deepen our understanding of the intestinal bacteria structure of M.rosenbergii and valuable information for probiotic screening and the application for M.rosenbergii.
基金supported by the National Natural Science Foundation of China(U1304326)the Natural Science Foundation of Henan Provincial(242300421242)。
文摘A two-year field experiment conducted under dryland conditions in semi-humid and drought-prone regions of China aimed to assess the effect of ammonia-oxidizing bacterial on maize water use efficiency and yield.A heterotrophic ammonia-oxidizing bacteria(HAOB)strain S2_8_1 was used.Six treatments were applied:(1)no irrigation+HAOB strain(DI),(2)no irrigation+blank culture medium(DM),(3)no irrigation control(DCK),(4)irrigation+HAOB(WI),(5)irrigation+blank culture medium(WM),and(6)irrigation control(WCK).Results revealed that HAOB treatment increased maize growth,yield,and water use efficiency over controls,regardless of whether the year was wet or dry.This improvement was attributed to the accelerated nitrification in the rhizosphere soil due to HAOB inoculation,which subsequently led to increased levels of leaf cytokinins.Overall,these findings suggest that HAOB inoculation holds promise as a strategy to boost water use efficiency and maize productivity in dryland agriculture.
基金supported by the National Science Foundation of China(Grant numbers 52274062)Natural Science Foundation of Liaoning Province(Grant numbers 2022-MS-362)。
文摘Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence.
文摘Profiling the protein composition of bacteria is essential for understanding their biology,physiology and interaction with environment.Mass spectrometry has become a pivotal tool for protein analysis,facilitating the examination of expression levels,molecular masses and structural modifications.In this study,we compared the performance of three widely-used mass spectrometry methods,i.e.,matrix-assisted laser desorption/ionization(MALDI)protein fingerprinting,top-down proteomics and bottom-up proteomics,in the profiling of bacterial protein composition.It was revealed that bottom-up proteomics provided the highest protein coverage and exhibited the greatest protein profile overlap between bacterial species.In contrast,MALDI protein fingerprinting demonstrated superior detection reproducibility and effectiveness in distinguishing between bacterial species.Although top-down proteomics identified fewer proteins than bottom-up approach,it complemented MALDI fingerprinting in the discovery of bacterial protein markers,both favoring abundant,stable,and hydrophilic bacterial ribosomal proteins.This study represents the most systematic and comprehensive comparison of mass spectrometry-based protein profiling methodologies to date.It provides valuable guidelines for the selection of appropriate profiling strategies for specific analytical purposes.This will facilitate studies across various fields,including infection diagnosis,antimicrobial resistance detection and pharmaceutical target discovery.
基金funded by the National Natural Science Foundation of China(32172232 and 31771990)the Major Science and Technology Projects of Heilongjiang Province(2021ZX12B05).
文摘The effects of the co-inoculation of Debaryomyces hansenii separately with 3 lactic acid bacteria(LAB),Lactobacillus sakei,Lactobacillus plantarum and Lactobacillus curvatus,on the taste and odour profi les of dry sausages were investigated.The co-inoculated sausages showed higher free amino acid and organic acid contents than the non-inoculated control and sausages inoculated with D.hansenii alone.Meanwhile,the sausages inoculated with D.hansenii+L.plantarum,D.hansenii+L.sakei and D.hansenii+L.curvatus had the highest contents of aldehydes,esters and alcohols,respectively.The results of electronic tongue,electronic nose and sensory evaluation demonstrated that compared with the sausage inoculated with D.hansenii,the sour taste and fl oral odour increased and the fatty odour decreased in the sausage inoculated with D.hansenii+L.sakei;this was more favourable for the development of a desirable fl avour in sausages.Moreover,the partial least squares regression analysis indicated that 10 taste and 33 odour compounds were mainly responsible for the differences in the flavour profiles among the sausages.Overall,these findings contributed to a more comprehensive understanding of the formation of sensory characteristics in dry sausages co-inoculated with yeast and LAB.
文摘A novel compound(H_(2)L)SCN(5⁃methyl⁃3⁃phenyl⁃2H⁃pyrazol⁃1⁃ium thiocyanate)has been obtained by the reaction of thiosemicarbazide with benzoylacetone in ethanol.Two zinccomplexes[Zn(HL)_(2)(NCS)(CH_(3)COO)](1)and[Zn_(2)(L)_(2)(HL)_(2)(NCS)_(2)]_(2)·2CH_(3)OH(2)have been synthesized by the coordination reactions of Zn(OAc)_(2)·2H_(2)O or ZnCl_(2)with(H_(2)L)SCN under reflux conditions.Elemental analyses and single⁃crystal X⁃ray diffraction have con⁃firmed the structures of the synthesized compounds.The(H_(2)L)SCN ligand and complex 1 pertain to the triclinic sys⁃tem with space group P1,while complex 2 belongs to the monoclinic system with space group P2_(1)/n.Additionally,the antibacterial activities of the compounds were evaluated in vitro using the agar diffusion method against the bac⁃terial strains(Candida albicans,Staphylococcus aureus,and Escherichia coli).The results showed that the ligand exhibited relatively good antibacterial activities against the bacteria,and the complexes possessed stronger antibac⁃terial activities against the same bacteria than the free ligand.CCDC:2190252,(H2L)SCN;2190253,1;2190256,2.
文摘AIM:To investigate the types of bacteria in patients with eye infections in Suzhou and their drug resistance to commonly used antibacterial drugs.METHODS:The clinical data of 155 patients were retrospectively collected in this study,and the pathogenic bacteria species and drug resistance of each pathogenic bacteria were analyzed.RESULTS:Among the 155 patients(age from 12 to 87 years old,with an average age of 57,99 males and 56 females)with eye infections(160 eyes:74 in the left eye,76 in the right eye and 5 in both eyes,all of which were exogenous),71(45.81%)strains were gram-positive bacteria,23(14.84%)strains were gram-negative bacteria and 61(39.35%)strains were fungi.Gram-positive bacteria were highly resistant to penicillin and erythromycin(78.87%and 46.48%respectively),but least resistant to vancomycin at 0.Gram-negative bacteria were highly resistant to cefoxitin and compound sulfamethoxazole(100%and 95.65%respectively),but least resistant to meropenem at 0.Comparison of the resistance of gram-positive and gram-negative bacteria to some drugs revealed statistically significant differences(P<0.05)in the resistance of both to cefoxitin,cotrimoxazole,levofloxacin,cefuroxime,ceftriaxone and ceftazidime,and both had higher rates of resistance to gram-negative bacteria than to gram-positive bacteria.The distribution of bacterial infection strains showed that Staphylococcus epidermidis was the most common strain in the conjunctiva,cornea,aqueous humor or vitreous body and other eye parts.Besides,Fusarium and Pseudomonas aeruginosa were also among the most common strains of conjunctival and corneal infections.CONCLUSION:Gram-positive bacteria are the dominant bacteria in eye infections,followed by gram-negative bacteria and fungi.Considering the resistance of gramnegative bacteria to multiple drugs,monitoring of bacteria should be strengthened in eye bacterial infections for effective prevention and control to reduce complications caused by eye infections.
基金supported by the National Natural Science Foundation of China(32102605)the Agricultural Science and Technology Innovation Program under Grant(CAAS-ASTIP-2020-IAR)。
文摘Food allergy as a global health problem threatens food industry.Bee pollen(BP)is a typical food with allergenic potentials,although it performs various nutritional/pharmacological functions to humans.In this study,lactic acid bacteria(LAB)were used to ferment Brassica napus BP for alleviating its allergenicity.Four novel allergens(glutaredoxin,oleosin-B2,catalase and lipase)were identified with significant decreases in LAB-fermented BP(FBP)than natural BP by proteomics.Meanwhile,metabolomics analysis showed significant increases of 28 characteristic oligopeptides and amino acids in FBP versus BP,indicating the degradation of LAB on allergens.Moreover,FBP showed alleviatory effects in BALB/c mice,which relieved pathological symptoms and lowered production of allergic mediators.Microbial high-throughput sequencing analysis showed that FBP could regulate gut microbiota and metabolism to strengthen immunity,which were closely correlated with the alleviation of allergic reactivity.These findings could contribute to the development and utilization of hypoallergenic BP products.
基金provided by the Jiangsu Provincial Key Research and Development Program (Grant No. BE2022362)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘Rapeseed meal is a promising food ingredient, but its utilization is limited by the presence of some potentially harmful ingredients, such as glucosinolates. Fermentation is a cost-effective method of detoxication but a food-grade starter culture with glucosinolates degradation capacity is required. In this study, 46 strains of lactic acid bacteria from traditional paocai brines were screened for their ability to glucosinolate degradation. The results showed that more than 50% of the strains significantly degraded glucosinolates. Two strains of Lactiplantibacillus(p7 and s7) with high capacity of glucosinolates degradation through producing enzymes were identified. Then,an optimized condition for rapeseed meal fermentation by p7 was established to degrade glucosinolates, which can achieve about 80% degradation. UPLC/Q-TOF-MS analysis showed that the degradation rate of individual glucosinolates was different and the degradation rate of gluconapin and progoitrin in rapeseed meal can reach more than 90%. Meanwhile, fermentation with p7 can improve safety of rapeseed meal by inhibiting the growth of Enterobacteriaceae and improve its nutritional properties by degrading phytic acid. The in vitro digestion experiments showed that the content of glucosinolates in rapeseed meal decreased significantly during gastric digestion. Meanwhile, fermentation with p7 can greatly improve the release of soluble protein and increase the contents of free essential amino acids, such as lysine(increased by 12 folds) and methionine(increased by 10 folds).
基金a Key Project of the Natural Science Foundation of Chongqing Education Committee(KJZD-K202101201).
文摘This study aimed to examine the effects of inoculating Fritillaria taipaiensis P.Y.Li leaves with different strains ofpotassium-solubilizing bacteria (KSB), or combinations thereof, focusing on aspects of photosynthesis and physiologicaland biochemical characteristics. At present, some studies have only studied the rhizosphere microbialcommunity characteristics of F. taipaiensis and have not discussed the effects of different microbial species on thegrowth promotion of F. taipaiensis. This paper will start from the perspective of potassium-solubilizing bacteria toconduct an in-depth study. Seed cultivation commenced at the base with three different KSBs in early October2022. The growth of F. taipaiensis leaves was observed after different treatments. Both single-plant and compoundinoculations were executed. A total of eight treatment groups were established, with aseptic fertilizer and sterilizedsoil functioning as the control group. The results reveal that intercellular CO_(2) concentration (Ci), stomatal conductance(Gs), and transpiration rate (Tr) were at their apex in the S7 group. Most treatment groups exhibited anincrease in leaf area, photosynthetic pigment content, soluble sugar, soluble protein, Superoxide Dismutase(SOD), Peroxidase (POD), Catalase (CAT) activities, and proline content. The expression levels of POD, SOD,and CAT genes were evaluated, following inoculation with different KSB. The highest was the S7 group. Theinoculation with various KSB, or combinations thereof, appears to bolster the growth and development of F. taipaiensis.The composite inoculation group S7, comprising Bacillus cereus, Burkholderia cepacia, and Bacillus subtilis,manifested the most favorable impact on the diverse indices of F. taipaiensis, thereby furnishing valuableinsights for the selection of bacterial fertilizer in the artificial cultivation of F. taipaiensis.
基金supported by the National Key Research and Development Program of China(2021YFD1801000)the Natural Science Foundation of China(32373066)+1 种基金the Natural Science Foundation of Jilin Province(20230101142JC)the Fundamental Research Funds for the Central Universities.
文摘Infections caused by intracellular bacterial pathogens are difficult to treat since most antibiotics have low cell permeability and undergo rapid degradation within cells.The rapid development and dissemination of antimicrobial–resistant strains have exacerbated this dilemma.With the increasing knowledge of host–pathogen interactions,especially bacterial strategies for survival and proliferation within host cells,host-directed therapy(HDT)has attracted increased interest and has emerged as a promising antiinfection method for treating intracellular infection.Herein,we applied a cell-based screening approach to a US Food and Drug Administration(FDA)-approved drug library to identify compounds that can inhibit the intracellular replication of Salmonella Typhimurium(S.Typhimurium).This screening allowed us to identify the antidiarrheal agent loperamide(LPD)as a potent inhibitor of S.Typhimurium intracellular proliferation.LPD treatment of infected cells markedly promoted the host autophagic response and lysosomal activity.A mechanistic study revealed that the increase in host autophagy and elimination of intracellular bacteria were dependent on the high expression of glycoprotein nonmetastatic melanoma protein B(GPNMB)induced by LPD.In addition,LPD treatment effectively protected against S.Typhimurium infection in Galleria mellonella and mouse models.Thus,our study suggested that LPD may be useful for the treatment of diseases caused by intracellular bacterial pathogens.Moreover,LPD may serve as a promising lead compound for the development of anti-infection drugs based on the HDT strategy.
基金This work was funded by Chongqing Municipal Technology Innovation and Application Development Program(cstc2020jscx-gksb0001)Yunnan Academician(Expert)Workstation Project(202105AF150073).
文摘Fritillaria taipaiensis P.Y.Li is a widely used medicinal herb in treating pulmonary diseases.In recent years,its wild resources have become scarce,and the demand for efficient artificial cultivation has significantly increased.This article is the first to apply phosphate solubilizing bacteria isolated from the rhizosphere soil of F.taipaiensis P.Y.Li to the cultivation process of F.taipaiensis P.Y.Li.The aim is to identify suitable reference strains for the artificial cultivation and industrial development of F.taipaiensis P.Y.Li by examining the effects of various phosphate solubilizing bacteria and their combinations on photosynthesis,physiological and biochemical properties,and gene expression related to the protective enzyme system in F.taipaiensis P.Y.Li.The experiment,conducted in pots at room temperature,included a control group(CK)and groups inoculated with inorganic phosphorussolubilizing bacteria:W1(Bacillus cereus),W2(Serratia plymuthica),W12(Bacillus cereus and Serratia plymuthica),and groups inoculated with organophosphorus-solubilizing bacteria:Y1(Bacillus cereus),Y2(Bacillus cereus),Y12(Bacillus cereus and Bacillus cereus),totaling seven groups.Compared to CK,most growth indices in the bacterial addition groups showed significant differences,with W12 achieving the highest values in all indices except the leaf area index.The content of photosynthetic pigments,photosynthetic parameters,and osmoregulatory substances increased variably in each bacterial treatment group.W12 exhibited the highest content of chlorophyll a and soluble protein,while W1 had the highest free proline content.The activities of peroxidase(POD),superoxide dismutase(SOD),and catalase(CAT)in all inoculated groups were higher than in CK,with significant changes in SOD and CAT activities.The malondialdehyde(MDA)content in all inoculated groups was lower than in CK,with Y12 being the lowest,at approximately 30%of CK.Gene expression corresponding to these three enzymes also increased variably,with POD expression in Y2 being the highest at 2.73 times that of CK.SOD and CAT expression in Y12 were the highest,at 1.84 and 4.39 times that of CK,respectively.These results indicate that inoculating phosphate solubilizing bacteria can enhance the growth of F.taipaiensis P.Y.Li,with the mixed inoculation groups W12 and Y12 demonstrating superior effects.This lays a theoretical foundation for selecting bacterial fertilizers in the cultivation process of F.taipaiensis P.Y.Li.
基金Supported by Special Project of"Grassland Talents"in Inner Mongolia.
文摘The rapid identification of lactic acid bacteria,which are essential microorganisms in the food industry,is of great significance for industrial applications.The identification of lactic acid bacteria traditionally relies on the isolation and identification of pure colonies.While this method is well-established and widely used,it is not without limitations.The subjective judgment inherent in the isolation and purification process introduces potential for error,and the incomplete nature of the isolation process can result in the loss of valuable information.The advent of next generation sequencing has provided a novel approach to the rapid identification of lactic acid bacteria.This technology offers several advantages,including rapidity,accuracy,high throughput,and low cost.Next generation sequencing represents a significant advancement in the field of DNA sequencing.Its ability to rapidly and accurately identify lactic acid bacteria strains in samples with insufficient information or in the presence of multiple lactic acid bacteria sets it apart as a valuable tool.The application of this technology not only circumvents the potential errors inherent in the traditional method but also provides a robust foundation for the expeditious identification of lactic acid bacteria strains and the authentication of bacterial powder in industrial applications.This paper commences with an overview of traditional and molecular biology methods for the identification of lactic acid bacteria.While each method has its own advantages,they are not without limitations in practical application.Subsequently,the paper provides an introduction of the principle,process,advantages,and disadvantages of next generation sequencing,and also details its application in strain identification and rapid identification of lactic acid bacteria.The objective of this study is to provide a comprehensive and reliable basis for the rapid identification of industrial lactic acid bacteria strains and the authenticity identification of bacterial powder.
文摘The aim of our study was to use a biosurfactant produced by Bacillus and Lactobacillus isolates as an antiseptic in the formulation of local soap. A total of 60 isolates were characterized by microbiological techniques (30 Bacillus and 30 Lactobacillus) and the ability to produce biosurfactants was demonstrated by a hydrocarbon emulsification index (E24). The emulsification indexes (E24) varied from 9% to 100% for Bacillus and from 33% to 100% for Lactobacillus as well. The antagonistic assay showed that biosurfactants were able to inhibit the formation of biofilms and growth of pathogens such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Salmonella typhirium, Shigella boydii and Proteus mirabilis. The biosurfactant consortium (BioC) from Bacillus consortium and from Lactobacillus was able to inhibit biofilm formation and the pathogens growth. The BioC was stable to alkaline pH and the temperatures stability of Biosurfactant was ranging from 50°C to 90°C. The soap was made by the cold saponification process using one biosurfactant consortium formulated. This soap has a pH of 10 and showed good cleaning power and good foam stability. Similarly, the soap showed good antiseptic power and disinfection power against all pathogens tested. Handwashing is critical to preventing disease transmission. The persistence of pathogens in waste water was evaluated. The BioS produced showed good disinfection power against all pathogens tested. The valor of reduction on the hands and in the waste water was significantly more than compared to the control soaps used. This soap could be used in the prevention, fighting, and treatment of bacterial and viral infections.