Nitrogen deposition and water tables are important factors to control soil microbial community structure.However,the specific effects and mechanisms of nitrogen deposition and water tables coupling on bacterial divers...Nitrogen deposition and water tables are important factors to control soil microbial community structure.However,the specific effects and mechanisms of nitrogen deposition and water tables coupling on bacterial diversity,abundance,and community structure in arid alpine wetlands remain unclear.The nitrogen deposition(0,10,and 20 kg N/(hm^(2)•a))experiments were conducted in the Bayinbulak alpine wetland with different water tables(perennial flooding,seasonal waterlogging,and perennial drying).The 16S rRNA(ribosomal ribonucleic acid)gene sequencing technology was employed to analyze the changes in bacterial community diversity,network structure,and function in the soil.Results indicated that bacterial diversity was the highest under seasonal waterlogging condition.However,nitrogen deposition only affected the bacterial Chao1 and beta diversity indices under seasonal waterlogging condition.The abundance of bacterial communities under different water tables showed significant differences at the phylum and genus levels.The dominant phylum,Proteobacteria,was sensitive to soil moisture and its abundance decreased with decreasing water tables.Although nitrogen deposition led to changes in bacterial abundance,such changes were small compared with the effects of water tables.Nitrogen deposition with 10 kg N/(hm^(2)•a)decreased bacterial edge number,average path length,and robustness.However,perennial flooding and drying conditions could simply resist environmental changes caused by 20 kg N/(hm^(2)•a)nitrogen deposition and their network structure remain unchanged.The sulfur cycle function was dominant under perennial flooding condition,and carbon and nitrogen cycle functions were dominant under seasonal waterlogging and perennial drying conditions.Nitrogen application increased the potential function of part of nitrogen cycle and decreased the potential function of sulfur cycle in bacterial community.In summary,composition of bacterial community in the arid alpine wetland was determined by water tables,and diversity of bacterial community was inhibited by a lower water table.Effect of nitrogen deposition on bacterial community structure and function depended on water tables.展开更多
Land use influences soil biota community composition and diversity,and then belowground ecosystem processes and functions.To characterize the effect of land use on soil biota,soil nematode communities in crop land,for...Land use influences soil biota community composition and diversity,and then belowground ecosystem processes and functions.To characterize the effect of land use on soil biota,soil nematode communities in crop land,forest land and fallow land were investigated in six regions of northern China.Generic richness,diversity,abundance and biomass of soil nematodes was the lowest in crop land.The richness and diversity of soil nematodes were 28.8and 15.1%higher in fallow land than in crop land,respectively.No significant differences in soil nematode indices were found between forest land and fallow land,but their network keystone genera composition was different.Among the keystone genera,50%of forest land genera were omnivores-predators and 36%of fallow land genera were bacterivores.The proportion of fungivores in forest land was 20.8%lower than in fallow land.The network complexity and the stability were lower in crop land than forest land and fallow land.Soil pH,NH_(4)^(+)-N and NO_(3)^(–)-N were the major factors influencing the soil nematode community in crop land while soil organic carbon and moisture were the major factors in forest land.Soil nematode communities in crop land influenced by artificial management practices were more dependent on the soil environment than communities in forest land and fallow land.Land use induced soil environment variation and altered network relationships by influencing trophic group proportions among keystone nematode genera.展开更多
Nitrogen(N)deep placement has been found to reduce N leaching and increase N use efficiency in paddy fields.However,relatively little is known how bacterial consortia,especially abundant and rare taxa,respond to N dee...Nitrogen(N)deep placement has been found to reduce N leaching and increase N use efficiency in paddy fields.However,relatively little is known how bacterial consortia,especially abundant and rare taxa,respond to N deep placement,which is critical for understanding the biodiversity and function of agricultural ecosystem.In this study,lllumina sequencing and ecological models were conducted to examine the diversity patterns and underlying assembly mechanisms of abundant and rare taxa in rice rhizosphere soil under different N fertilization regimes at four rice growth stages in paddy fields.The results showed that abundant and rare bacteria had distinct distribution patterns in rhizosphere samples.Abundant bacteria showed ubiquitous distribution;while rare taxa exhibited uneven distribution across all samples.Stochastic processes dominated community assembly of both abundant and rare bacteria,with dispersal limitation playing a more vital role in abundant bacteria,and undominated processes playing a more important role in rare bacteria.The N deep placement was associated with a greater influence of dispersal limitation than the broadcast N fertilizer(BN)and no N fertilizer(NN)treatments in abundant and rare taxa of rhizosphere soil;while greater contributions from homogenizing dispersal were observed for BN and NN in rare taxa.Network analysis indicated that abundant taxa with closer relationships were usually more likely to occupy the central position of the network than rare taxa.Nevertheless,most of the keystone species were rare taxa and might have played essential roles in maintaining the network stability.Overall,these findings highlighted that the ecological mechanisms and co-occurrence patterns of abundant and rare bacteria in rhizosphere soil under N deep placement.展开更多
Atmospheric nitrogen(N)deposition is predicted to increase,especially in the subtropics.However,the responses of soil microorganisms to long-term N addition at the molecular level in N-rich subtropical forests have no...Atmospheric nitrogen(N)deposition is predicted to increase,especially in the subtropics.However,the responses of soil microorganisms to long-term N addition at the molecular level in N-rich subtropical forests have not been clarified.A long-term nutrient addition experiment was conducted in a subtropical evergreen old-growth forest in China.The four treatments were:control,low N(50 kg N ha^(-1)a^(-1)),high N(100 kg N ha^(-1)a^(-1)),and combined N and phosphorus(P)(100 kg N ha^(-1)a^(-1)+50 kg P ha^(-1)a^(-1)).Metagenomic sequencing characterized diversity and composition of soil microbial communities and used to construct bacterial/fungal co-occurrence networks.Nutrient-treated soils were more acidic and had higher levels of dissolved organic carbon than controls.There were no significant differences in microbial diversity and community composition across treatments.The addition of nutrients increased the abundance of copiotrophic bacteria and potentially beneficial microorganisms(e.g.,Gemmatimonadetes,Chaetomium,and Aureobasidium).Low N addition increased microbiome network connectivity.Three rare fungi were identified as module hubs under nutrient addition,indicating that low abundance fungi were more sensitive to increased nutrients.The results indicate that the overall composition of microbial communities was stable but not static to long-term N addition.Our findings provide new insights that can aid predictions of the response of soil microbial communities to long-term N addition.展开更多
BACKGROUND Spontaneous bacterial peritonitis(SBP)is an important prognostic factor for outcomes in patients with cirrhosis.Antibiotic prophylaxis is recommended in patients at high risk for developing SBP,but the choi...BACKGROUND Spontaneous bacterial peritonitis(SBP)is an important prognostic factor for outcomes in patients with cirrhosis.Antibiotic prophylaxis is recommended in patients at high risk for developing SBP,but the choice of antibiotics remains unclear.AIM To evaluate the efficacy of various antibiotics for prophylaxis of SBP based on randomized control trials(RCTs).METHODS Electronic databases were searched through November 2018 for RCTs evaluating the efficacy of therapies for primary or secondary prophylaxis of SBP.The primary outcome was the development of SBP.Sensitivity analyses limited to studies of primary or secondary prophylaxis and studies reported after 2010 were performed.The secondary outcome was the risk of all-cause mortality or transplant.The outcomes were assessed by rank of therapies based on network meta-analyses.Individual meta-analyses were also performed.RESULTS Thirteen RCTs(1742 patients)including norfloxacin,ciprofloxacin,rifaximin,trimethoprim-sulfamethoxazole(TMP-SMX),or placebo/no comparator were identified.Individual meta-analyses showed superiority of rifaximin over norfloxacin as well as norfloxacin and TMP-SMX over placebo.Network metaanalysis demonstrated the rank of efficacy in reducing the risk of SBP as:Rifaximin,ciprofloxacin,TMP-SMX,norfloxacin,and placebo/no comparator.Rifaximin ranked highest in sensitivity analyses limited to studies of primary or secondary prophylaxis and studies reported after 2010.Similarly,rifaximin ranked highest in reducing the risk of death/transplant.CONCLUSION The present comprehensive network meta-analysis provides RCT based evidence for superior efficacy of rifaximin compared to other antibiotics for the prophylaxis of SBP and reducing risk of death/transplant.Further RCTs are warranted to confirm our findings.展开更多
Denitrifying bacteria in epiphytic biofilms play a crucial role in nitrogen cycle in aquatic habitats.However,little is known about the connection between algae and denitrifying bacteria and their assembly processes i...Denitrifying bacteria in epiphytic biofilms play a crucial role in nitrogen cycle in aquatic habitats.However,little is known about the connection between algae and denitrifying bacteria and their assembly processes in epiphytic biofilms.Epiphytic biofilms were collected from submerged macrophytes(Patamogeton lucens and Najas marina L.)in the Caohai Lake,Guizhou,SW China,from July to November 2020 to:(1)investigate the impact of abiotic and biotic variables on denitrifying bacterial communities;(2)investigate the temporal variation of the algae-denitrifying bacteria co-occurrence networks;and(3)determine the contribution of deterministic and stochastic processes to the formation of denitrifying bacterial communities.Abiotic and biotic factors influenced the variation in the denitrifying bacterial community,as shown in the Mantel test.The co-occurrence network analysis unveiled intricate interactions among algae to denitrifying bacteria.Denitrifying bacterial community co-occurrence network complexity(larger average degrees representing stronger network complexity)increased continuously from July to September and decreased in October before increasing in November.The co-occurrence network complexity of the algae and nirS-encoding denitrifying bacteria tended to increase from July to November.The co-occurrence network complexity of the algal and denitrifying bacterial communities was modified by ammonia nitrogen(NH_(4)^(+)-N)and total phosphorus(TP),pH,and water temperature(WT),according to the ordinary least-squares(OLS)model.The modified stochasticity ratio(MST)results reveal that deterministic selection dominated the assembly of denitrifying bacterial communities.The influence of environmental variables to denitrifying bacterial communities,as well as characteristics of algal-bacterial co-occurrence networks and the assembly process of denitrifying bacterial communities,were discovered in epiphytic biofilms in this study.The findings could aid in the appropriate understanding and use of epiphytic biofilms denitrification function,as well as the enhancement of water quality.展开更多
The co-occurrence of bacteria and microeukaryote species is a ubiquitous ecological phenomenon,but there is limited cross-domain research in aquatic environments.We conducted a network statistical analysis and visuali...The co-occurrence of bacteria and microeukaryote species is a ubiquitous ecological phenomenon,but there is limited cross-domain research in aquatic environments.We conducted a network statistical analysis and visualization of microbial cross-domain co-occurrence patterns based on DNA sampling of a typical subtropical bay during four seasons,using high-throughput sequencing of both 18S rRNA and 16S rRNA genes.First,we found obvious relationships between network stability and network complexity indices.For example,increased cooperation and modularity were found to weaken the stability of cross-domain networks.Secondly,we found that bacterial operational taxonomic units(OTUs)were the most important contributors to network complexity and stability as they occupied more nodes,constituted more keystone OTUs,built more connections,more importantly,ignoring bacteria led to greater variation in network robustness.Gammaproteobacteria,Alphaproteobacteria,Bacteroidetes,and Actinobacteria were the most ecologically important groups.Finally,we found that the environmental drivers most associated with cross-domain networks varied across seasons(in detail,the network in January was primarily constrained by temperature and salinity,the network in April was primarily constrained by depth and temperature,the network in July was mainly affected by depth,temperature,and salinity,depth was the most important factor affecting the network in October)and that environmental influence was stronger on bacteria than on microeukaryotes.展开更多
The Western Subarctic Gyre(WSG)is one of the two gyre-systems in the subarctic North Pacific known for high nutrient and low-chlorophyll waters.However,the bacterioplankton in marine water of this area,either in terms...The Western Subarctic Gyre(WSG)is one of the two gyre-systems in the subarctic North Pacific known for high nutrient and low-chlorophyll waters.However,the bacterioplankton in marine water of this area,either in terms of the taxonomic composition or functional structure,remains relatively unexplored.A total of 22 sampling sites from two water layers(surface water,SW and 50-m layer water,FW)were collected in this area.The physiochemical parameters of waters,Synechococcus,and bacterial density,as well as the bacterioplankton community composition and distribution pattern,were analyzed.The nutrient concentrations of DIN,DIP,and DSi,Chl-a concentration,and the average abundance of heterobacteria in FW were higher than those in SW.However,temperature and the average abundance of Synechococcus and pico-eukaryotes were higher in SW.A total of 3269 OTUs were assigned,and 2123OTUs were commonly shared;moreover,similar alpha diversity patterns were observed in both SW and FW.The bacterioplankton community showed significantly obvious correlation with salinity,DIP,DIN,and Chl a in both SW and FW.Proteobacteria,Cyanobacteria,Bacteroidota,Actinobacteriota,and Firmicutes were the main phyla while Synechococcus_CC9902,Psychrobacter,and Sulfitobacter were the dominant genera in each sampling site.Most correlations that happened between the OTUs in the cooccurrence network were positive and inter-module.Higher edges and graph density were found in SW,indicating that more correlations occurred,and the community was more complex in SW.This study provided novel knowledge on the bacterioplankton community structure and the correlation characteristics in WSG.展开更多
Classifying the texture of granules in 2D images has aroused manifold research atten-tion for its technical challenges in image processing areas.This letter presents an aggregate texture identification approach by joi...Classifying the texture of granules in 2D images has aroused manifold research atten-tion for its technical challenges in image processing areas.This letter presents an aggregate texture identification approach by jointly using Gray Level Co-occurrence Probability(GLCP) and BP neural network techniques.First, up to 8 GLCP-associated texture feature parameters are defined and computed, and these consequent parameters next serve as the inputs feeding to the BP neural network to calculate the similarity to any of given aggregate texture type.A finite number of aggregate images of 3 kinds, with each containing specific type of mineral particles, are put to the identification test, experimentally proving the feasibility and robustness of the proposed method.展开更多
Inversion tillage with straw amendment is widely applied in northeastern China, and it can substantially increase the storage of carbon and improve multiple subsoil functions. Soil microorganisms are believed to be th...Inversion tillage with straw amendment is widely applied in northeastern China, and it can substantially increase the storage of carbon and improve multiple subsoil functions. Soil microorganisms are believed to be the key to this process,but research into their role in subsoil amelioration is limited. Therefore, a field experiment was conducted in 2018 in a region in northeastern China with Hapli-Udic Cambisol using four treatments: conventional tillage(CT, tillage to a depth of 15 cm with no straw incorporation), straw incorporation with conventional tillage(SCT, tillage to a depth of 15 cm),inversion tillage(IT, tillage to a depth of 35 cm) and straw incorporation with inversion tillage(SIT, tillage to a depth of 35 cm). The soils were managed by inversion to a depth of 15 or 35 cm every year after harvest. The results indicated that SIT improved soil multi-nutrient cycling variables and increased the availability of key nutrients such as soil organic carbon, total nitrogen, available nitrogen, available phosphorus and available potassium in both the topsoil and subsoil.In contrast to CT and SCT, SIT created a looser microbial network structure but with highly centralized clusters by reducing the topological properties of average connectivity and node number, and by increasing the average path length and the modularity. A Random Forest analysis found that the average path length and the clustering coefficient were the main determinants of soil multi-nutrient cycling. These findings suggested that SIT can be an effective option for improving soil multi-nutrient cycling and the structure of microbial networks, and they provide crucial information about the microbial strategies that drive the decomposition of straw in Hapli-Udic Cambisol.展开更多
Straits are ideal models to investigate the bacterial community assembly in complex hydrological environments. However, few studies have focused on bacterial communities in them. Here, comparable bacterial communities...Straits are ideal models to investigate the bacterial community assembly in complex hydrological environments. However, few studies have focused on bacterial communities in them. Here, comparable bacterial communities in costal shallow Bohai Strait(BS) and oceanic deep Fram Strait(FS) were studied. The Shannon and Chao1 indices were both higher in BS than in FS. The relative abundances of the classes Deltaproteobacteria and Bacilli and the family Halieaceae were higher in BS than in FS, in contrast to the families OM1_clade and JTB255_marine_benthic_group, revealing typical characteristics of bacterial communities in coastal and oceanic regions. Cluster analysis based on the Bray-Curtis index showed that samples were clustered by depth layer in FS and BS, indicating that structures of bacterial communities would diff er with increasing water depth in straits. Additionally, the cluster relationships among samples in abundant and rare communities were both similar to those in entire communities. However, the dissimilarities among samples showed a descending order as rare communities, entire communities and abundant communities. Network analysis indicated that the BS network was obviously more complex than the FS network. Filamentous bacteria Desulfobulbaceae exhibited high degree values in BS but not in FS, indicating key roles of Desulfobulbaceae in the BS. Our study provides different and common evidences for understanding microbial ecology in coastal shallow and oceanic deep straits.展开更多
Purpose:To reveal the research hotpots and relationship among three research hot topics in b iomedicine,namely CRISPR,iPS(induced Pluripotent Stem)cell and Synthetic biology.Design/methodology/approach:We set up their...Purpose:To reveal the research hotpots and relationship among three research hot topics in b iomedicine,namely CRISPR,iPS(induced Pluripotent Stem)cell and Synthetic biology.Design/methodology/approach:We set up their keyword co-occurrence networks with using three indicators and information visualization for metric analysis.Findings:The results reveal the main research hotspots in the three topics are different,but the overlapping keywords in the three topics indicate that they are mutually integrated and interacted each other.Research limitations:All analyses use keywords,without any other forms.Practical implications:We try to find the information distribution and structure of these three hot topics for revealing their research status and interactions,and for promoting biomedical developments.Originality/value:We chose the core keywords in three research hot topics in biomedicine by using h-index.展开更多
Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the ...Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the complex microbiota and the dynamic changes in microbial community and flavor compounds during fish fermentation.Single-molecule real-time sequencing and molecular networking analysis revealed the correlations among different microbial genera and the relationships between microbial taxa and volatile compounds.Mechanisms underlying flavor development were also elucidated via KEGG based functional annotations.Clostridium,Shewanella,and Staphylococcus were the dominant microbial genera.Forty-nine volatile compounds were detected in the fermented fish samples,with thirteen identified as characteristic volatile compounds(ROAV>1).Volatile profiles resulted from the interactions among the microorganisms and derived enzymes,with the main metabolic pathways being amino acid biosynthesis/metabolism,carbon metabolism,and glycolysis/gluconeogenesis.This study demonstrated the approaches for distinguishing key microbiota associated with volatile compounds and monitoring the industrial production of high-quality fermented fish products.展开更多
Bacteria in desert soil have unique phylogeny and important ecological functions, and theirresponses to changes in precipitation need further attention. However, relevant studies have mainlyfocused on the surface soil...Bacteria in desert soil have unique phylogeny and important ecological functions, and theirresponses to changes in precipitation need further attention. However, relevant studies have mainlyfocused on the surface soil, and studies on the responses of bacteria at different soil depths to variationsin precipitation are rare. Thus, we used 16S rDNA high-throughput sequencing to investigate the changesin soil bacterial distribution along a mean annual precipitation gradient (50–150 mm) in the Alxa Desert,China, and compared the variation characteristics in the surface soil layer (0–10 cm) and subsurface soillayer (10–20 cm). Results showed that soil bacterial communities significantly changed along theprecipitation gradient in both soil layers. However, the subsurface soil layer could support bacterialcommunities with higher diversity and closer internal relationships but more internal competition than thesurface soil layer. Additionally, compared with the surface soil layer, variations in diversity andco-occurrence patterns in the subsurface soil layer were more in line with the changes in the mean annualprecipitation, while bacterial community structure was less variable in the subsurface soil layer. Comparedwith the mean annual precipitation, soil moisture had little influence on the structure and diversity of soilbacterial community but had a high correlation with intercommunity connectivity. Therefore, soilmoisture might play a complex role in mediating environmental conditions and soil bacterial communitycharacteristics. Due to the different responses of surface and subsurface soil bacteria to the changes inprecipitation, it is necessary to distinguish different soil layers when predicting the trends in desert soilbacterial conditions associated with precipitation, and prediction of subsurface soil bacteria may be moreaccurate.展开更多
Ecological purification in a reservoir is an important strategy to control the level of nutrients in water.The bacterial community of such a reservoir is the main agent for pollutant degradation,which has not been ful...Ecological purification in a reservoir is an important strategy to control the level of nutrients in water.The bacterial community of such a reservoir is the main agent for pollutant degradation,which has not been fully documented.Taking the Jinze Reservoir,a freshwater source for Shanghai,China as the case,its spatial distributions of water and sediment bacteria were determined using 16S rRNA gene-based Illumina MiSeq sequencing,and the environmental parameters were analyzed.The reservoir takes natural river water and functions as an ecological purification system,consisting of three functional zones,i.e.,pretreatment zone,ecological purification zone,and ecological sustaining zone.Results show that the concentrations of both total nitrogen(TN)and total phosphorus(TP)decreased considerably after the ecological treatment,and the concentration of dissolved oxygen(DO)in the ecological purification zone was boosted from that before pretreatment.In addition,patterns of bacterial communities in both water and sediment were similar and consisted of mainly Proteobacteria,Actinobacteria,and Bacteroidetes.However,difference in water bacterial composition was distinct in each functional zone,whereas the bacterial communities in sediment changed only slightly among sediment samples.Network analysis revealed nonrandom co-occurrence patterns of bacterial community composition in water and sediment,and Pseudomonas,unclassified Comamonadaceae,Variovorax,and Dechloromonas were the key taxa in the co-occurrence network.The bacterial taxa from the same module of the network had strong ecological connections,participated in C-cycles,and shared common trophic properties.PICRUSt analysis showed that bacteria were involved potentially in various essential processes;and the abundance of predicted xenobiotic biodegradation genes showed a decreasing trend in water samples from the inlet to the outlet of the reservoir.These results improve our current knowledge of the spatial distribution of bacteria in water and sediment in ecological purification reservoirs.展开更多
Decaying wood is a novel key factor required for biodiversity and function of a forest,as it provides a good account of substrate and habitats for various organisms.Herein,the bacterial diversity in decaying wood of B...Decaying wood is a novel key factor required for biodiversity and function of a forest,as it provides a good account of substrate and habitats for various organisms.Herein,the bacterial diversity in decaying wood of Betula platyphylla was discussed through high throughput sequencing.Our results showed that most of the obtained sequences belonged to the phyla Firmicutes,Proteobacteria,Bacteroidetes,Actinobacteria,Acidobacteria and Verrucomicrobia.Bacterial community compositions in samples with higher moisture content were obviously different than that with lower content,which could be reflected by richness estimators,diversity indices,and cluster and heatmap analysis.All three networks were non-random and possessed topological features of complex systems such as small-world and modularity features.However,these networks exhibited distinct topological features,indicating the potential ability of extensive cooperative and competitive interactions in the decayed wood microenvironments.Redundant analysis showed that most bacterial phyla were mainly distributed in highermoisture trunks.The obtained data will increase the knowledge of the complex bacterial diversity associated with dead wood,and lay a foundation for the bioconversion technology of plant cell walls using bacteria.展开更多
The elevational distributions of bacterial communities in natural mountain forests,especially along large elevational gradients,have been studied for many years.However,the distributional patterns that underlie variat...The elevational distributions of bacterial communities in natural mountain forests,especially along large elevational gradients,have been studied for many years.However,the distributional patterns that underlie variations in soil bacterial communities along small-scale elevational gradients in urban ecosystems are not yet well understood.Using Illumina MiSeq DNA sequencing,we surveyed soil bacterial communities at three elevations on Zijin Mountain in Nanjing City:the hilltop(300 m a.s.l.),the hillside(150 m a.s.l.),and the foot of the hill(0 m a.s.l.).The results showed that edaphic properties differed significantly with elevation.Bacterial community composition,rather than alpha diversity,strongly differed among the three elevations(Adonis:R2=0.12,P<0.01).Adonis and DistLM analyses demonstrated that bacterial community composition was highly correlated with soil pH,elevation,total nitrogen(TN),and dissolved organic carbon(DOC).The degree scores,betweenness centralities,and composition of keystone species were distinct among the elevations.These results demonstrate strong elevational partitioning in the distributions of soil bacterial communities along the gradient on Zijin Mountain.Soil pH and elevation together drove the smallscale elevational distribution of soil bacterial communities.This study broadens our understanding of distribution patterns and biotic co-occurrence associations of soil bacterial communities from large elevational gradients to short elevational gradients.展开更多
In microbial ecology,there is limited understanding of the mechanisms governing patterns in community structure across space and time.Here,we studied the changes of bacterial co-occurrence network structure over four ...In microbial ecology,there is limited understanding of the mechanisms governing patterns in community structure across space and time.Here,we studied the changes of bacterial co-occurrence network structure over four primary successional soils after glacier retreat,including a sand dune system and three glacier foreland series,varying in timescale from centuries to millennia.We found that in all series,network structure was most complex in the earliest stages of succession,and became simpler over time.Richness and abundance of keystone species and network stability also declined over time.It appears that with less productive,nutrient poor and physiologically extreme conditions of early succession,closer interactions among bacterial species are ecologically selected for.These may take the form of consortia(with positive interactions)or stronger niche exclusion(with negative interactions).Additionally,we quantified the relative roles of different structuring processes on bacterial community using a bin-based null model analysis(iCAMP).With each successional series,community composition was initially governed by stochasticity,but as succession proceeded there was a progressive increase in deterministic selection over time,correlated with decreasing pH.Overall,our results show a consistency among the four series in long-term processes of community succession,with more integrated networks and greater stochasticity in early stages.展开更多
Individuals tend to move freely when there is enough room but would act collectively for their survival under external stress.In the case of living cells,for instance,when a drop of low-density flagellated bacterial s...Individuals tend to move freely when there is enough room but would act collectively for their survival under external stress.In the case of living cells,for instance,when a drop of low-density flagellated bacterial solution is transferred onto the agar surface,the initially disordered movement of individual bacteria would be replaced with coordinated cell swarming after a lag phase of a few hours.Here,we study how such cooperation is established while overcoming the disorder at the onset of the lag phase with single nanoparticle tracking.Upon the spreading of the droplet,the bacteria in the solution cluster and align near the almost immobilized contact line confining the drop,forming a narrow ring of cells.As individual cells move in and out of the ring continuously,certain flow patterns emerge in the inter-bacterial fluid.We reveal high-speed long-distance unidirectional flows with definite chirality along the outside of the ring,along the inside of the ring and across the ring.We speculate that these flows enable the fast and efficient transport,facilitating the communication and unification of the bacterial community.展开更多
Objective: The aim of this study was to investigate the underlying mechanism of Shufeng Jiedu Capsule(SFJD) for treating bacterial pneumonia(BP) in vivo based on network pharmacology and experimental verification stud...Objective: The aim of this study was to investigate the underlying mechanism of Shufeng Jiedu Capsule(SFJD) for treating bacterial pneumonia(BP) in vivo based on network pharmacology and experimental verification study.Methods: Network pharmacology was used to screen the active compounds and target genes of SFJD.Then, the multi drug resistance-Pseudomonas aeruginosa(MDR-PA) mice lethal model and MDR-PA pneumonia model were established to evaluate the therapeutic effects and underlying mechanisms of SFJD.Western blot and ELISA were used to determinate the protein expression level of the IL-17 signaling pathway and JAK/STAT signaling pathway.Results: After screening, 172 potential components of SFJD were generated, based on which we constructed an SFJD-component-target-BP interaction network. The Gene ontology(GO) and Kyoto encyclopedia of genes and genomes(KEGG) enrichment revealed that SFJD could regulate the IL-17 signaling pathway and Janus kinase/signal transducer and activator of transcription(JAK/STAT) signaling pathway.Molecular docking showed that the potential target proteins had good combinations with the main active components. SFJD significantly reduced the mortality and prolonged survival days in lethal models. The lung index and pathological changes in the lung were also significantly decreased. SFJD could significantly decrease the expression of interleukin-17A(IL-17A), TNF receptor associated factor 6(TRAF6),phospho-inhibitor of nuclear factor-kappa B(p-IκB)/inhibitor of NF-κB(IκB), phospho-NF-κB p65(pNF-κB p65), phospho-protein kinase B(p-AKT)/AKT, phospho-signal transducer and activator of transcription 3(p-STAT3)/STAT3, phospho-signal transducer and activator of transcription 1(p-STAT1)/STAT1, and the protein level of interleukin-6(IL-6), tumor necrosis factor a(TNF-a), and IL-1β.Conclusion: Combined with network pharmacology and in vivo study, it was found that SFJD exerted its therapeutic effects on BP by inhibiting the IL-17 pathway and JAK/STAT signaling pathway. This study provides new evidence for SFJD in treatment of BP.展开更多
基金supported by the National Natural Science Foundation of China(31960258)the Graduate Research Innovation Project of Xinjiang Uygur Autonomous Region(XJ2023G119).
文摘Nitrogen deposition and water tables are important factors to control soil microbial community structure.However,the specific effects and mechanisms of nitrogen deposition and water tables coupling on bacterial diversity,abundance,and community structure in arid alpine wetlands remain unclear.The nitrogen deposition(0,10,and 20 kg N/(hm^(2)•a))experiments were conducted in the Bayinbulak alpine wetland with different water tables(perennial flooding,seasonal waterlogging,and perennial drying).The 16S rRNA(ribosomal ribonucleic acid)gene sequencing technology was employed to analyze the changes in bacterial community diversity,network structure,and function in the soil.Results indicated that bacterial diversity was the highest under seasonal waterlogging condition.However,nitrogen deposition only affected the bacterial Chao1 and beta diversity indices under seasonal waterlogging condition.The abundance of bacterial communities under different water tables showed significant differences at the phylum and genus levels.The dominant phylum,Proteobacteria,was sensitive to soil moisture and its abundance decreased with decreasing water tables.Although nitrogen deposition led to changes in bacterial abundance,such changes were small compared with the effects of water tables.Nitrogen deposition with 10 kg N/(hm^(2)•a)decreased bacterial edge number,average path length,and robustness.However,perennial flooding and drying conditions could simply resist environmental changes caused by 20 kg N/(hm^(2)•a)nitrogen deposition and their network structure remain unchanged.The sulfur cycle function was dominant under perennial flooding condition,and carbon and nitrogen cycle functions were dominant under seasonal waterlogging and perennial drying conditions.Nitrogen application increased the potential function of part of nitrogen cycle and decreased the potential function of sulfur cycle in bacterial community.In summary,composition of bacterial community in the arid alpine wetland was determined by water tables,and diversity of bacterial community was inhibited by a lower water table.Effect of nitrogen deposition on bacterial community structure and function depended on water tables.
基金supported by the National Natural Science Foundation of China(U22A20501)the National Key Research and Development Plan of China(2022YFD1500601)+4 种基金the National Science and Technology Fundamental Resources Investigation Program of China(2018FY100304)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA28090200)the Liaoning Province Applied Basic Research Plan Program,China(2022JH2/101300184)the Shenyang Science and Technology Plan Program,China(21-109-305)the Liaoning Outstanding Innovation Team,China(XLYC2008015)。
文摘Land use influences soil biota community composition and diversity,and then belowground ecosystem processes and functions.To characterize the effect of land use on soil biota,soil nematode communities in crop land,forest land and fallow land were investigated in six regions of northern China.Generic richness,diversity,abundance and biomass of soil nematodes was the lowest in crop land.The richness and diversity of soil nematodes were 28.8and 15.1%higher in fallow land than in crop land,respectively.No significant differences in soil nematode indices were found between forest land and fallow land,but their network keystone genera composition was different.Among the keystone genera,50%of forest land genera were omnivores-predators and 36%of fallow land genera were bacterivores.The proportion of fungivores in forest land was 20.8%lower than in fallow land.The network complexity and the stability were lower in crop land than forest land and fallow land.Soil pH,NH_(4)^(+)-N and NO_(3)^(–)-N were the major factors influencing the soil nematode community in crop land while soil organic carbon and moisture were the major factors in forest land.Soil nematode communities in crop land influenced by artificial management practices were more dependent on the soil environment than communities in forest land and fallow land.Land use induced soil environment variation and altered network relationships by influencing trophic group proportions among keystone nematode genera.
基金the National Key Research and Development Program of China(2016YFD0200309 and 2018YFD0301104-01).
文摘Nitrogen(N)deep placement has been found to reduce N leaching and increase N use efficiency in paddy fields.However,relatively little is known how bacterial consortia,especially abundant and rare taxa,respond to N deep placement,which is critical for understanding the biodiversity and function of agricultural ecosystem.In this study,lllumina sequencing and ecological models were conducted to examine the diversity patterns and underlying assembly mechanisms of abundant and rare taxa in rice rhizosphere soil under different N fertilization regimes at four rice growth stages in paddy fields.The results showed that abundant and rare bacteria had distinct distribution patterns in rhizosphere samples.Abundant bacteria showed ubiquitous distribution;while rare taxa exhibited uneven distribution across all samples.Stochastic processes dominated community assembly of both abundant and rare bacteria,with dispersal limitation playing a more vital role in abundant bacteria,and undominated processes playing a more important role in rare bacteria.The N deep placement was associated with a greater influence of dispersal limitation than the broadcast N fertilizer(BN)and no N fertilizer(NN)treatments in abundant and rare taxa of rhizosphere soil;while greater contributions from homogenizing dispersal were observed for BN and NN in rare taxa.Network analysis indicated that abundant taxa with closer relationships were usually more likely to occupy the central position of the network than rare taxa.Nevertheless,most of the keystone species were rare taxa and might have played essential roles in maintaining the network stability.Overall,these findings highlighted that the ecological mechanisms and co-occurrence patterns of abundant and rare bacteria in rhizosphere soil under N deep placement.
基金supported by the National Science Foundation of China(No.31770672 and 3137062)the National Basic Research Program of China(No.2010CB950602)。
文摘Atmospheric nitrogen(N)deposition is predicted to increase,especially in the subtropics.However,the responses of soil microorganisms to long-term N addition at the molecular level in N-rich subtropical forests have not been clarified.A long-term nutrient addition experiment was conducted in a subtropical evergreen old-growth forest in China.The four treatments were:control,low N(50 kg N ha^(-1)a^(-1)),high N(100 kg N ha^(-1)a^(-1)),and combined N and phosphorus(P)(100 kg N ha^(-1)a^(-1)+50 kg P ha^(-1)a^(-1)).Metagenomic sequencing characterized diversity and composition of soil microbial communities and used to construct bacterial/fungal co-occurrence networks.Nutrient-treated soils were more acidic and had higher levels of dissolved organic carbon than controls.There were no significant differences in microbial diversity and community composition across treatments.The addition of nutrients increased the abundance of copiotrophic bacteria and potentially beneficial microorganisms(e.g.,Gemmatimonadetes,Chaetomium,and Aureobasidium).Low N addition increased microbiome network connectivity.Three rare fungi were identified as module hubs under nutrient addition,indicating that low abundance fungi were more sensitive to increased nutrients.The results indicate that the overall composition of microbial communities was stable but not static to long-term N addition.Our findings provide new insights that can aid predictions of the response of soil microbial communities to long-term N addition.
文摘BACKGROUND Spontaneous bacterial peritonitis(SBP)is an important prognostic factor for outcomes in patients with cirrhosis.Antibiotic prophylaxis is recommended in patients at high risk for developing SBP,but the choice of antibiotics remains unclear.AIM To evaluate the efficacy of various antibiotics for prophylaxis of SBP based on randomized control trials(RCTs).METHODS Electronic databases were searched through November 2018 for RCTs evaluating the efficacy of therapies for primary or secondary prophylaxis of SBP.The primary outcome was the development of SBP.Sensitivity analyses limited to studies of primary or secondary prophylaxis and studies reported after 2010 were performed.The secondary outcome was the risk of all-cause mortality or transplant.The outcomes were assessed by rank of therapies based on network meta-analyses.Individual meta-analyses were also performed.RESULTS Thirteen RCTs(1742 patients)including norfloxacin,ciprofloxacin,rifaximin,trimethoprim-sulfamethoxazole(TMP-SMX),or placebo/no comparator were identified.Individual meta-analyses showed superiority of rifaximin over norfloxacin as well as norfloxacin and TMP-SMX over placebo.Network metaanalysis demonstrated the rank of efficacy in reducing the risk of SBP as:Rifaximin,ciprofloxacin,TMP-SMX,norfloxacin,and placebo/no comparator.Rifaximin ranked highest in sensitivity analyses limited to studies of primary or secondary prophylaxis and studies reported after 2010.Similarly,rifaximin ranked highest in reducing the risk of death/transplant.CONCLUSION The present comprehensive network meta-analysis provides RCT based evidence for superior efficacy of rifaximin compared to other antibiotics for the prophylaxis of SBP and reducing risk of death/transplant.Further RCTs are warranted to confirm our findings.
基金Supported by the National Natural Science Foundation of China(No.41867056)the Guizhou Provincial Key Technology R&D Program(Nos.2021470,2023216)。
文摘Denitrifying bacteria in epiphytic biofilms play a crucial role in nitrogen cycle in aquatic habitats.However,little is known about the connection between algae and denitrifying bacteria and their assembly processes in epiphytic biofilms.Epiphytic biofilms were collected from submerged macrophytes(Patamogeton lucens and Najas marina L.)in the Caohai Lake,Guizhou,SW China,from July to November 2020 to:(1)investigate the impact of abiotic and biotic variables on denitrifying bacterial communities;(2)investigate the temporal variation of the algae-denitrifying bacteria co-occurrence networks;and(3)determine the contribution of deterministic and stochastic processes to the formation of denitrifying bacterial communities.Abiotic and biotic factors influenced the variation in the denitrifying bacterial community,as shown in the Mantel test.The co-occurrence network analysis unveiled intricate interactions among algae to denitrifying bacteria.Denitrifying bacterial community co-occurrence network complexity(larger average degrees representing stronger network complexity)increased continuously from July to September and decreased in October before increasing in November.The co-occurrence network complexity of the algae and nirS-encoding denitrifying bacteria tended to increase from July to November.The co-occurrence network complexity of the algal and denitrifying bacterial communities was modified by ammonia nitrogen(NH_(4)^(+)-N)and total phosphorus(TP),pH,and water temperature(WT),according to the ordinary least-squares(OLS)model.The modified stochasticity ratio(MST)results reveal that deterministic selection dominated the assembly of denitrifying bacterial communities.The influence of environmental variables to denitrifying bacterial communities,as well as characteristics of algal-bacterial co-occurrence networks and the assembly process of denitrifying bacterial communities,were discovered in epiphytic biofilms in this study.The findings could aid in the appropriate understanding and use of epiphytic biofilms denitrification function,as well as the enhancement of water quality.
基金Supported by the National Natural Science Foundation of China(Nos.42141003,42176147)the National Key Research and Development Program of China(No.2022YFF0802204)the Natural Science Foundation of Fujian Province of China(No.2021J01025)。
文摘The co-occurrence of bacteria and microeukaryote species is a ubiquitous ecological phenomenon,but there is limited cross-domain research in aquatic environments.We conducted a network statistical analysis and visualization of microbial cross-domain co-occurrence patterns based on DNA sampling of a typical subtropical bay during four seasons,using high-throughput sequencing of both 18S rRNA and 16S rRNA genes.First,we found obvious relationships between network stability and network complexity indices.For example,increased cooperation and modularity were found to weaken the stability of cross-domain networks.Secondly,we found that bacterial operational taxonomic units(OTUs)were the most important contributors to network complexity and stability as they occupied more nodes,constituted more keystone OTUs,built more connections,more importantly,ignoring bacteria led to greater variation in network robustness.Gammaproteobacteria,Alphaproteobacteria,Bacteroidetes,and Actinobacteria were the most ecologically important groups.Finally,we found that the environmental drivers most associated with cross-domain networks varied across seasons(in detail,the network in January was primarily constrained by temperature and salinity,the network in April was primarily constrained by depth and temperature,the network in July was mainly affected by depth,temperature,and salinity,depth was the most important factor affecting the network in October)and that environmental influence was stronger on bacteria than on microeukaryotes.
基金Supported by the National Key Research and Development Program of China(No.2019YFD0901401)the Natural Science Foundation of Shandong Province(No.ZR202102280248)+1 种基金the National Natural Science Foundation of China(No.81900630)the Outstanding Youth Project of Yunnan Provincial Department of Science and Technology(No.2019F1019)。
文摘The Western Subarctic Gyre(WSG)is one of the two gyre-systems in the subarctic North Pacific known for high nutrient and low-chlorophyll waters.However,the bacterioplankton in marine water of this area,either in terms of the taxonomic composition or functional structure,remains relatively unexplored.A total of 22 sampling sites from two water layers(surface water,SW and 50-m layer water,FW)were collected in this area.The physiochemical parameters of waters,Synechococcus,and bacterial density,as well as the bacterioplankton community composition and distribution pattern,were analyzed.The nutrient concentrations of DIN,DIP,and DSi,Chl-a concentration,and the average abundance of heterobacteria in FW were higher than those in SW.However,temperature and the average abundance of Synechococcus and pico-eukaryotes were higher in SW.A total of 3269 OTUs were assigned,and 2123OTUs were commonly shared;moreover,similar alpha diversity patterns were observed in both SW and FW.The bacterioplankton community showed significantly obvious correlation with salinity,DIP,DIN,and Chl a in both SW and FW.Proteobacteria,Cyanobacteria,Bacteroidota,Actinobacteriota,and Firmicutes were the main phyla while Synechococcus_CC9902,Psychrobacter,and Sulfitobacter were the dominant genera in each sampling site.Most correlations that happened between the OTUs in the cooccurrence network were positive and inter-module.Higher edges and graph density were found in SW,indicating that more correlations occurred,and the community was more complex in SW.This study provided novel knowledge on the bacterioplankton community structure and the correlation characteristics in WSG.
基金Funded by Ningbo Natural Science Foundation (No.2006A610016)
文摘Classifying the texture of granules in 2D images has aroused manifold research atten-tion for its technical challenges in image processing areas.This letter presents an aggregate texture identification approach by jointly using Gray Level Co-occurrence Probability(GLCP) and BP neural network techniques.First, up to 8 GLCP-associated texture feature parameters are defined and computed, and these consequent parameters next serve as the inputs feeding to the BP neural network to calculate the similarity to any of given aggregate texture type.A finite number of aggregate images of 3 kinds, with each containing specific type of mineral particles, are put to the identification test, experimentally proving the feasibility and robustness of the proposed method.
基金funded by the National Key Research and Development Program of China (2022YFD1500100)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA28070100)+1 种基金the National Natural Science Foundation of China (41807085)the earmarked fund for China Agriculture Research System (CARS04)。
文摘Inversion tillage with straw amendment is widely applied in northeastern China, and it can substantially increase the storage of carbon and improve multiple subsoil functions. Soil microorganisms are believed to be the key to this process,but research into their role in subsoil amelioration is limited. Therefore, a field experiment was conducted in 2018 in a region in northeastern China with Hapli-Udic Cambisol using four treatments: conventional tillage(CT, tillage to a depth of 15 cm with no straw incorporation), straw incorporation with conventional tillage(SCT, tillage to a depth of 15 cm),inversion tillage(IT, tillage to a depth of 35 cm) and straw incorporation with inversion tillage(SIT, tillage to a depth of 35 cm). The soils were managed by inversion to a depth of 15 or 35 cm every year after harvest. The results indicated that SIT improved soil multi-nutrient cycling variables and increased the availability of key nutrients such as soil organic carbon, total nitrogen, available nitrogen, available phosphorus and available potassium in both the topsoil and subsoil.In contrast to CT and SCT, SIT created a looser microbial network structure but with highly centralized clusters by reducing the topological properties of average connectivity and node number, and by increasing the average path length and the modularity. A Random Forest analysis found that the average path length and the clustering coefficient were the main determinants of soil multi-nutrient cycling. These findings suggested that SIT can be an effective option for improving soil multi-nutrient cycling and the structure of microbial networks, and they provide crucial information about the microbial strategies that drive the decomposition of straw in Hapli-Udic Cambisol.
基金Supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA11020403)the National Natural Science Foundation of China(Nos.41576165,41376138)
文摘Straits are ideal models to investigate the bacterial community assembly in complex hydrological environments. However, few studies have focused on bacterial communities in them. Here, comparable bacterial communities in costal shallow Bohai Strait(BS) and oceanic deep Fram Strait(FS) were studied. The Shannon and Chao1 indices were both higher in BS than in FS. The relative abundances of the classes Deltaproteobacteria and Bacilli and the family Halieaceae were higher in BS than in FS, in contrast to the families OM1_clade and JTB255_marine_benthic_group, revealing typical characteristics of bacterial communities in coastal and oceanic regions. Cluster analysis based on the Bray-Curtis index showed that samples were clustered by depth layer in FS and BS, indicating that structures of bacterial communities would diff er with increasing water depth in straits. Additionally, the cluster relationships among samples in abundant and rare communities were both similar to those in entire communities. However, the dissimilarities among samples showed a descending order as rare communities, entire communities and abundant communities. Network analysis indicated that the BS network was obviously more complex than the FS network. Filamentous bacteria Desulfobulbaceae exhibited high degree values in BS but not in FS, indicating key roles of Desulfobulbaceae in the BS. Our study provides different and common evidences for understanding microbial ecology in coastal shallow and oceanic deep straits.
基金the National Natural Science Foundation of China Grant 71673131 for financial support
文摘Purpose:To reveal the research hotpots and relationship among three research hot topics in b iomedicine,namely CRISPR,iPS(induced Pluripotent Stem)cell and Synthetic biology.Design/methodology/approach:We set up their keyword co-occurrence networks with using three indicators and information visualization for metric analysis.Findings:The results reveal the main research hotspots in the three topics are different,but the overlapping keywords in the three topics indicate that they are mutually integrated and interacted each other.Research limitations:All analyses use keywords,without any other forms.Practical implications:We try to find the information distribution and structure of these three hot topics for revealing their research status and interactions,and for promoting biomedical developments.Originality/value:We chose the core keywords in three research hot topics in biomedicine by using h-index.
基金supported by the National Natural Science Foundation of China(32001733)the Earmarked fund for CARS(CARS-47)+3 种基金Guangxi Natural Science Foundation Program(2021GXNSFAA196023)Guangdong Basic and Applied Basic Research Foundation(2021A1515010833)Young Talent Support Project of Guangzhou Association for Science and Technology(QT20220101142)the Special Scientific Research Funds for Central Non-profit Institutes,Chinese Academy of Fishery Sciences(2020TD69)。
文摘Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the complex microbiota and the dynamic changes in microbial community and flavor compounds during fish fermentation.Single-molecule real-time sequencing and molecular networking analysis revealed the correlations among different microbial genera and the relationships between microbial taxa and volatile compounds.Mechanisms underlying flavor development were also elucidated via KEGG based functional annotations.Clostridium,Shewanella,and Staphylococcus were the dominant microbial genera.Forty-nine volatile compounds were detected in the fermented fish samples,with thirteen identified as characteristic volatile compounds(ROAV>1).Volatile profiles resulted from the interactions among the microorganisms and derived enzymes,with the main metabolic pathways being amino acid biosynthesis/metabolism,carbon metabolism,and glycolysis/gluconeogenesis.This study demonstrated the approaches for distinguishing key microbiota associated with volatile compounds and monitoring the industrial production of high-quality fermented fish products.
基金This work was financially supported by the National Key Research and Development Program of China(2016YFC0501001)the Key Laboratory Cooperative Research Project of Chinese Academy of Sciences.
文摘Bacteria in desert soil have unique phylogeny and important ecological functions, and theirresponses to changes in precipitation need further attention. However, relevant studies have mainlyfocused on the surface soil, and studies on the responses of bacteria at different soil depths to variationsin precipitation are rare. Thus, we used 16S rDNA high-throughput sequencing to investigate the changesin soil bacterial distribution along a mean annual precipitation gradient (50–150 mm) in the Alxa Desert,China, and compared the variation characteristics in the surface soil layer (0–10 cm) and subsurface soillayer (10–20 cm). Results showed that soil bacterial communities significantly changed along theprecipitation gradient in both soil layers. However, the subsurface soil layer could support bacterialcommunities with higher diversity and closer internal relationships but more internal competition than thesurface soil layer. Additionally, compared with the surface soil layer, variations in diversity andco-occurrence patterns in the subsurface soil layer were more in line with the changes in the mean annualprecipitation, while bacterial community structure was less variable in the subsurface soil layer. Comparedwith the mean annual precipitation, soil moisture had little influence on the structure and diversity of soilbacterial community but had a high correlation with intercommunity connectivity. Therefore, soilmoisture might play a complex role in mediating environmental conditions and soil bacterial communitycharacteristics. Due to the different responses of surface and subsurface soil bacteria to the changes inprecipitation, it is necessary to distinguish different soil layers when predicting the trends in desert soilbacterial conditions associated with precipitation, and prediction of subsurface soil bacteria may be moreaccurate.
基金Supported by the Key Program in the Youth Elite Support Plan in Universities of Anhui Province(No.gxyqZD2020046)the Key Program in the Key University Science Research Project of Anhui Province(No.KJ2020A0716)the Key Research and Development Program of Anhui Province(No.202004i07020010)。
文摘Ecological purification in a reservoir is an important strategy to control the level of nutrients in water.The bacterial community of such a reservoir is the main agent for pollutant degradation,which has not been fully documented.Taking the Jinze Reservoir,a freshwater source for Shanghai,China as the case,its spatial distributions of water and sediment bacteria were determined using 16S rRNA gene-based Illumina MiSeq sequencing,and the environmental parameters were analyzed.The reservoir takes natural river water and functions as an ecological purification system,consisting of three functional zones,i.e.,pretreatment zone,ecological purification zone,and ecological sustaining zone.Results show that the concentrations of both total nitrogen(TN)and total phosphorus(TP)decreased considerably after the ecological treatment,and the concentration of dissolved oxygen(DO)in the ecological purification zone was boosted from that before pretreatment.In addition,patterns of bacterial communities in both water and sediment were similar and consisted of mainly Proteobacteria,Actinobacteria,and Bacteroidetes.However,difference in water bacterial composition was distinct in each functional zone,whereas the bacterial communities in sediment changed only slightly among sediment samples.Network analysis revealed nonrandom co-occurrence patterns of bacterial community composition in water and sediment,and Pseudomonas,unclassified Comamonadaceae,Variovorax,and Dechloromonas were the key taxa in the co-occurrence network.The bacterial taxa from the same module of the network had strong ecological connections,participated in C-cycles,and shared common trophic properties.PICRUSt analysis showed that bacteria were involved potentially in various essential processes;and the abundance of predicted xenobiotic biodegradation genes showed a decreasing trend in water samples from the inlet to the outlet of the reservoir.These results improve our current knowledge of the spatial distribution of bacteria in water and sediment in ecological purification reservoirs.
基金This project was supported by the State Key Laboratory of Tree Genetics and Breeding(Northeast Forestry University),the Fundamental Research Funds for the Central Universities(No.2572017AA23).
文摘Decaying wood is a novel key factor required for biodiversity and function of a forest,as it provides a good account of substrate and habitats for various organisms.Herein,the bacterial diversity in decaying wood of Betula platyphylla was discussed through high throughput sequencing.Our results showed that most of the obtained sequences belonged to the phyla Firmicutes,Proteobacteria,Bacteroidetes,Actinobacteria,Acidobacteria and Verrucomicrobia.Bacterial community compositions in samples with higher moisture content were obviously different than that with lower content,which could be reflected by richness estimators,diversity indices,and cluster and heatmap analysis.All three networks were non-random and possessed topological features of complex systems such as small-world and modularity features.However,these networks exhibited distinct topological features,indicating the potential ability of extensive cooperative and competitive interactions in the decayed wood microenvironments.Redundant analysis showed that most bacterial phyla were mainly distributed in highermoisture trunks.The obtained data will increase the knowledge of the complex bacterial diversity associated with dead wood,and lay a foundation for the bioconversion technology of plant cell walls using bacteria.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB15010101)the National Natural Science Foundation of China(41907039)the China Biodiversity Observation Networks(Sino BON).
文摘The elevational distributions of bacterial communities in natural mountain forests,especially along large elevational gradients,have been studied for many years.However,the distributional patterns that underlie variations in soil bacterial communities along small-scale elevational gradients in urban ecosystems are not yet well understood.Using Illumina MiSeq DNA sequencing,we surveyed soil bacterial communities at three elevations on Zijin Mountain in Nanjing City:the hilltop(300 m a.s.l.),the hillside(150 m a.s.l.),and the foot of the hill(0 m a.s.l.).The results showed that edaphic properties differed significantly with elevation.Bacterial community composition,rather than alpha diversity,strongly differed among the three elevations(Adonis:R2=0.12,P<0.01).Adonis and DistLM analyses demonstrated that bacterial community composition was highly correlated with soil pH,elevation,total nitrogen(TN),and dissolved organic carbon(DOC).The degree scores,betweenness centralities,and composition of keystone species were distinct among the elevations.These results demonstrate strong elevational partitioning in the distributions of soil bacterial communities along the gradient on Zijin Mountain.Soil pH and elevation together drove the smallscale elevational distribution of soil bacterial communities.This study broadens our understanding of distribution patterns and biotic co-occurrence associations of soil bacterial communities from large elevational gradients to short elevational gradients.
文摘In microbial ecology,there is limited understanding of the mechanisms governing patterns in community structure across space and time.Here,we studied the changes of bacterial co-occurrence network structure over four primary successional soils after glacier retreat,including a sand dune system and three glacier foreland series,varying in timescale from centuries to millennia.We found that in all series,network structure was most complex in the earliest stages of succession,and became simpler over time.Richness and abundance of keystone species and network stability also declined over time.It appears that with less productive,nutrient poor and physiologically extreme conditions of early succession,closer interactions among bacterial species are ecologically selected for.These may take the form of consortia(with positive interactions)or stronger niche exclusion(with negative interactions).Additionally,we quantified the relative roles of different structuring processes on bacterial community using a bin-based null model analysis(iCAMP).With each successional series,community composition was initially governed by stochasticity,but as succession proceeded there was a progressive increase in deterministic selection over time,correlated with decreasing pH.Overall,our results show a consistency among the four series in long-term processes of community succession,with more integrated networks and greater stochasticity in early stages.
基金supported by the National Natural Science Foundation of China(21425519,21621003,91853105 and 22127807).
文摘Individuals tend to move freely when there is enough room but would act collectively for their survival under external stress.In the case of living cells,for instance,when a drop of low-density flagellated bacterial solution is transferred onto the agar surface,the initially disordered movement of individual bacteria would be replaced with coordinated cell swarming after a lag phase of a few hours.Here,we study how such cooperation is established while overcoming the disorder at the onset of the lag phase with single nanoparticle tracking.Upon the spreading of the droplet,the bacteria in the solution cluster and align near the almost immobilized contact line confining the drop,forming a narrow ring of cells.As individual cells move in and out of the ring continuously,certain flow patterns emerge in the inter-bacterial fluid.We reveal high-speed long-distance unidirectional flows with definite chirality along the outside of the ring,along the inside of the ring and across the ring.We speculate that these flows enable the fast and efficient transport,facilitating the communication and unification of the bacterial community.
基金supported by the National Natural Science Foundation of China (No. 82104500)the Scientific and Technological Innovation Project of China Academy of Chinese Medical Sciences (No. CI2021B015)+1 种基金National Natural Science Foundation of China (No. 82141206)Scientific and Technological Innovation Project of China Academy of Chinese Medical Sciences (No. CI2021A04620)。
文摘Objective: The aim of this study was to investigate the underlying mechanism of Shufeng Jiedu Capsule(SFJD) for treating bacterial pneumonia(BP) in vivo based on network pharmacology and experimental verification study.Methods: Network pharmacology was used to screen the active compounds and target genes of SFJD.Then, the multi drug resistance-Pseudomonas aeruginosa(MDR-PA) mice lethal model and MDR-PA pneumonia model were established to evaluate the therapeutic effects and underlying mechanisms of SFJD.Western blot and ELISA were used to determinate the protein expression level of the IL-17 signaling pathway and JAK/STAT signaling pathway.Results: After screening, 172 potential components of SFJD were generated, based on which we constructed an SFJD-component-target-BP interaction network. The Gene ontology(GO) and Kyoto encyclopedia of genes and genomes(KEGG) enrichment revealed that SFJD could regulate the IL-17 signaling pathway and Janus kinase/signal transducer and activator of transcription(JAK/STAT) signaling pathway.Molecular docking showed that the potential target proteins had good combinations with the main active components. SFJD significantly reduced the mortality and prolonged survival days in lethal models. The lung index and pathological changes in the lung were also significantly decreased. SFJD could significantly decrease the expression of interleukin-17A(IL-17A), TNF receptor associated factor 6(TRAF6),phospho-inhibitor of nuclear factor-kappa B(p-IκB)/inhibitor of NF-κB(IκB), phospho-NF-κB p65(pNF-κB p65), phospho-protein kinase B(p-AKT)/AKT, phospho-signal transducer and activator of transcription 3(p-STAT3)/STAT3, phospho-signal transducer and activator of transcription 1(p-STAT1)/STAT1, and the protein level of interleukin-6(IL-6), tumor necrosis factor a(TNF-a), and IL-1β.Conclusion: Combined with network pharmacology and in vivo study, it was found that SFJD exerted its therapeutic effects on BP by inhibiting the IL-17 pathway and JAK/STAT signaling pathway. This study provides new evidence for SFJD in treatment of BP.