期刊文献+
共找到62篇文章
< 1 2 4 >
每页显示 20 50 100
Bacterial and cyanobacterial diversities determined by T-RFLP analyses in the Jiaozhou Bay 被引量:4
1
作者 REN Jing DANG Hongyue +2 位作者 SONG Linsheng SUN Song AN Liguo 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2006年第4期113-123,共11页
The methods of DAPI staining epifluorescence microscopy and T-RFLP analysis were used to analyze the microbial abundance and diversity in surface seawater sampled from 12 stations inside and outside of the Jiaozhou Ba... The methods of DAPI staining epifluorescence microscopy and T-RFLP analysis were used to analyze the microbial abundance and diversity in surface seawater sampled from 12 stations inside and outside of the Jiaozhou Bay during a survey on 12 and 13 September 2004. The abundance of total microbes is in the range of 10^6~ 10^7 cells/cm^3, similar to those of most semi-enclosed bays in the temperate areas in the world. The highest microbial densities occur in the northeastern part of the Jiaozhou Bay, around the mouths of Loushan and Licun Rivers and the Hongdao aquacultural farming areas, suggesting that the degree and characteristics of pollutions, along with geographical and hydrological effects, may be important determinants affecting the abundance and distribution of bacteria in the Jiaozhou Bay. Bacterial communities inside and outside of the Jiaozhou Bay can be grouped into three classes based on T-RFLP patterns and cluster analyses. Stations at the water channel of the bay mouth and outside, such as D1, D3, D5, D6 and D7, are grouped together to stand for the outside bacterial community interacting with the environment outside of the Jiaozhou Bay. Stations of the innermost side of the Jiaozhou Bay, such as A3, A5, B2 and Y1, are grouped together to stand for the residential bacteria community. Stations C1, C3 and CA are grouped together and may stand for the transitional bacterial assemblage between the residential community and the outside community. However, there is no such a defined relationship for the case of cyanobacterial diversity, indicating the fact that cyanobacteria are more flexible and adaptable to all kinds of conditions. 展开更多
关键词 bacterial diversity CYANOBACTERIA 16S rDNA T-RFLP Jiaozhou Bay
下载PDF
Characterization of Bacterial Community Structure and Diversity in Rhizosphere Soils of Three Plants in Rapidly Changing Salt Marshes Using 16S rDNA 被引量:18
2
作者 WANG Meng CHEN Jia-Kuan LI Bo 《Pedosphere》 SCIE CAS CSCD 2007年第5期545-556,共12页
The structure and diversity of the bacterial communities in rhizosphere soils of native Phragmites australis and Scirpus rnariqueter and alien Spartina alterniflora in the Yangtze River Estuary were investigated by co... The structure and diversity of the bacterial communities in rhizosphere soils of native Phragmites australis and Scirpus rnariqueter and alien Spartina alterniflora in the Yangtze River Estuary were investigated by constructing 16S ribosomal DNA (rDNA) clone libraries. The bacterial diversity was quantified by placing the clones into operational taxonomic unit (OTU) groups at the level of sequence similarity of 〉 97%. Phylogenetic analysis of the resulting 398 clone sequences indicated a high diversity of bacteria in the rhizosphere soils of these plants. The members of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria of the phylum Proteobacteria were the most abundant in rhizobacteria. Chao 1 nonpaxametric diversity estimator coupled with the reciprocal of Simpson's index (l/D) was applied to sequence data obtained from each library to evaluate total sequence diversity and quantitatively compare the level of dominance. The results showed that Phragmites, Scirpus, and Spartina rhizosphere soils contained 200, 668, and 382 OTUs, respectively. The bacterial communities in the Spartina and Phragraites rhizosphere soils displayed species dominance revealed by 1/D, whereas the bacterial community in Scirpus rhizosphere soil had uniform distributions of species abundance. Overall, analysis of 16S rDNA clone libraries from the rhizosphere soils indicates that the changes in bacterial composition may occur concomitantly with the shift of species composition in plant communities. 展开更多
关键词 16S rDNA bacterial diversity plant succession RHIZOSPHERE salt marshes
下载PDF
Effect of long-term continuous cropping of strawberry on soil bacterial community structure and diversity 被引量:26
3
作者 LI Wei-hua LIU Qi-zhi CHEN Peng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第11期2570-2582,共13页
Long-term monoculture leads to continuous cropping (CC) problems, which complicate agricultural production, both locally and abroad. This study contrasted the different bacterial community compositions, physicochemi... Long-term monoculture leads to continuous cropping (CC) problems, which complicate agricultural production, both locally and abroad. This study contrasted the different bacterial community compositions, physicochemical properties and enzyme activities of strawberry soil subjected to CC, CC rhizosphere (CCR), non-CC (NCC) and non-CC rhizosphere (NCCR) treatments. The soil physicochemical properties and enzyme activities were significantly reduced after long-term CC. In addition, five variation trends were observed for the 11 major bacterial genera in the soil. Sphingomonas was the only stable group among all treatments. The proportions of Novosphingobium, Rhodoplanes, Povalibacter, Cellvibrio and Stenotrophobacterdecreased after CC. The relative abundances of Pelagibius, Thioprofundum and AIIokutzneria increased only in the CC treatment. Nitrospira were more abundant in rhizosphere soil than in non-rhizosphere soil. The relative abundance of Bacillus increased after CC. Redundancy analysis revealed that Bacillus, Pelagibius and AIIokutzneria had significant negative correlations with the soil physicochemical properties and enzyme activities. Therefore, these genera may be the key bacteria influenced by the physicochemical properties and enzyme activities altered by replanting. These results indicate that long-term CC of strawberry leads to less favourable rhizosphere soil conditions, which can be understood as a stress-induced response of the bacterial community diversity. Further research is needed to determine how the quality of soil is reduced by the shift in the diversity of the soil bacterial community. 展开更多
关键词 rhizosphere soil high-throughput sequencing biogeochemical cycle bacterial diversity
下载PDF
Changes of Bacterial Community Structure in Copper Mine Tailings After Colonization of Reed (Phragmites communis) 被引量:10
4
作者 CHEN Yu-Qing REN Guan-Ju +3 位作者 AN Shu-Qing SUN Qing-Ye LIU Chang-Hong SHUANG Jing-Lei 《Pedosphere》 SCIE CAS CSCD 2008年第6期731-740,共10页
Soil samples were collected from both bare and vegetated mine railings to study the changes in bacterial communities and soil chemical properties of copper mine tailings due to reed (Phragmites communis) colonizatio... Soil samples were collected from both bare and vegetated mine railings to study the changes in bacterial communities and soil chemical properties of copper mine tailings due to reed (Phragmites communis) colonization. The structures of bacterial communities were investigated using culture-independent 16S rRNA gene sequencing method. The bacterial diversity in the bare mine tailing was lower than that of the vegetated mine tailing. The former was dominated by sulfur metabolizing bacteria, whereas the latter was by nitrogen fixing bacteria. The bare mine tailing was acidic (pH = 3.78), whereas the vegetated mine tailing was near neutral (pH : 7.28). The contents of organic matter, total nitrogen, and ammonium acetate-extractable potassium in vegetated mine tailings were significantly higher than those in the bare mine railings (P 〈 0.01), whereas available phosphorus and electrical conductivity were significantly lower than those in the bare mine tailings (P 〈 0.01). The results demonstrated that 16S rRNA gene sequencing could be successfully used to study the bacterial diversity in mine tailings. The colonization of the mine tailings by reed significantly changed the bacterial community and the chemical properties of tailings. The complex interactions between bacteria and plants deserve further investigation. 展开更多
关键词 16S rRNA gene bacterial diversity bacterial community functional group mine tailings
下载PDF
Bacterial diversity and community structure in the East China Sea by 454 sequencing of the 16S rRNA gene 被引量:8
5
作者 董逸 赵苑 +7 位作者 张文燕 李艳 周锋 刘诚刚 吴莹 刘素美 张武昌 肖天 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2014年第3期527-541,共15页
The 454 sequencing method was used to detect bacterial diversity and community structure in the East China Sea. Overall, 149 067 optimized reads with an average length of 454 nucleotides were obtained from 17 seawater... The 454 sequencing method was used to detect bacterial diversity and community structure in the East China Sea. Overall, 149 067 optimized reads with an average length of 454 nucleotides were obtained from 17 seawater samples and fi ve sediment samples sourced in May 2011. A total of 22 phyla, 34 classes, 74 orders, 146 families, and 333 genera were identifi ed in this study. Some of them were detected for the fi rst time from the East China Sea. The estimated richness and diversity indices were both higher in the sediment samples compared with in the seawater samples. All the samples were divided by their diversity indices into four regions. Similarity analysis showed that the seawater samples could be classifi ed into six groups. The groups differed from each other and had unique community structure characteristics. It was found that different water masses in the sampling areas may have had some infl uence on the bacterial community structure. A canonical correspondence analysis revealed that seawater samples in different areas and at different depths were affected by different environmental parameters. This study will lay the foundation for future research on microbiology in the East China Sea. 展开更多
关键词 bacterial diversity community structure 454 sequencing water masses canonical correspondence analysis East China Sea
下载PDF
Rumen fermentation and bacterial communities in weaned Chahaer lambs on diets with different protein levels 被引量:6
6
作者 YANG Chun-tao SI Bing-wen +3 位作者 DIAO Qi-yu JIN Hai ZENG Shu-qin TU Yan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第7期1564-1574,共11页
We evaluatedthe effects of diets with different crude protein (CP) levels on growth performance, rumen fermentation and bacterial communities in weaned Chahaer lambs. 128 weaned Chahaer lambs ((20.56±1.43) k... We evaluatedthe effects of diets with different crude protein (CP) levels on growth performance, rumen fermentation and bacterial communities in weaned Chahaer lambs. 128 weaned Chahaer lambs ((20.56±1.43) kg body weight; ram:ewe 1:1) aged (61±1.85) d were randomly alotted to one of four diets with CP content of 11.17% (T1), 12.06% (T2), 13.40% (T3) or 14.36% (T4).Ruminal fermentation parameters were measured and bacterial communities were analysed using PCR-dena-turing gradient gel electrophoresis (PCR-DGGE) and quantitative PCR. The average daily gain and feed utilization efifciency in T3 were higher than those in the other groups (P〈0.05), although the dry matter intake and metabolizable energy intake were similar. Total volatile fatty acid concentration in the ruminal lfuid of T3 was lower than that of T1 (P=0.011), T2 (P=0.008) or T4 (P=0.309). The ammonia nitrogen concentration and acetate/propionate ratio of ruminal lfuid were signiifcantly higher in lambs fed the higher CP diets, whereas the molar concentrations of propionate and butyrate of ruminal lfuid were lower. The rumen bacterial community was similar in T2 and T3 which shown more stable and diverse rumen microbes ecosystem compared with the other groups. The DGGE proifles and phylogenetic tree indicated thatBacteroides uniformis,Clostrid-iumalkalicellulosi,Alkalibaculum bacchiandSaccharofermentanssp.were common bacterium of Chahaer lamb rumen. B. uniformis,C.alkalicelulosi,Saccharofermentanssp. andGracilibacter thermotolerans,which belong to the Bacteroidetes and Firmicutesphyla,were the dominant species in the rumen of lambs fed 13.40% CP.However,Ruminococcus albus, Ruminococcus lfavefaciensand Butyrivibrio ifbrisolvenswerenot differentin lambs fed different CP diets. Therefore, it could be concluded thatB. uniformis,C.alkalicelulosi,A. bacchiandSaccharofermentanssp.were common bacteria of Chahaer lamb rumen. Furthermore, the dietary CP of 13.04% could improve performance and change rumen fermentation model by increasing the dominant species’ peak intensities ofB. uniformis,C.alkalicelulosi,Saccharofermentanssp. and Gracilibacter thermotoleransand stabilizing rumen microbial ecosystem. 展开更多
关键词 dietary crude protein rumen fermentation bacterial diversity weaned lamb PCR-DGGE
下载PDF
The bacterial diversity in surface sediment from the South China Sea 被引量:5
7
作者 WANG Guanghua DONG Junde +1 位作者 LI Xiang SUN Huimin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2010年第4期98-105,共8页
16S rDNA sequencing results from this study and literatures demonstrate that sediment bacteria in the South China Sea (SCS) were very diverse,which contained 22 of the 24 phyla of bacteria investigated from marine s... 16S rDNA sequencing results from this study and literatures demonstrate that sediment bacteria in the South China Sea (SCS) were very diverse,which contained 22 of the 24 phyla of bacteria investigated from marine sediment,however,it was very imbalance among stations.So bacterial diversity from 15 samples which covered a wide range of sediment types from 20 to 3 888 m in depth was studied in DGGE (denature gradient gel electrophoresis) in this paper.The DGGE results indicate that both sediment bacterial diversity and diversity difference among stations were significant.Thirty representative and differential fingerprints among samples were recovered and sequenced,phylogenetic analysis indicates that they may belong to Proteobacteria (α-,β-,γ-,δ-,ε-),Planctomycetes,Firmicutes,Chloroflexi,Acidobacteria,Actinobacteria,Nitrospirae,Gemmatimonadetes,candidate division WS3 and so on,of which,Gemmatimonadetes and candidate division WS3 bacteria were first detected in SCS sediment.This study also shows that bacterial diversity analysis based on DGGE was more potential than traditional 16S rDNA clone library in multiple sample analysis. 展开更多
关键词 bacterial diversity DGGE marine sediment South China Sea
下载PDF
Bacterial diversity in activated sludge from a consecutively aerated submerged membrane bioreactor treating domestic wastewater 被引量:5
8
作者 DU, Cheng WU, Zhenbin +4 位作者 XIAO, Enrong ZHOU, Qiaohong CHENG, Shuiping LIANG, Wei HE, Feng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第10期1210-1217,共8页
The bacterial diversity of activated sludge from submerged membrane bioreactor (SMBR) was investigated. A 16S rDNA clone library was generated, and 150 clones were screened using restriction fragment length polymorphi... The bacterial diversity of activated sludge from submerged membrane bioreactor (SMBR) was investigated. A 16S rDNA clone library was generated, and 150 clones were screened using restriction fragment length polymorphism (RFLP). Of the screened clones, almost full-length 16S rDNA sequences of 64 clones were sequenced. Phylogenetic tree was constructed with a database containing clone sequences from this study and bacterial rDNA sequences from NCBI for identification purposes. The 90.6% of the clones were a?l... 展开更多
关键词 bacterial diversity restriction fragment length polymorphism (RFLP) submerged membrane bioreactor (SMBR) 16S rDNA clone library
下载PDF
Carbendazim induces a temporary change in soil bacterial community structure 被引量:3
9
作者 WANG Xiuguo, SONG Min, GAO Chunming, DONG Bin, ZHANG Qun, FANG Hua, YU Yunlong Department of Plant Protection, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第12期1679-1683,共5页
The effect of carbendazim applications on the diversity and structure of a soil bacterial community was studied under field conditions using temperature gradient gel electrophoresis (TGGE) and partial sequence analy... The effect of carbendazim applications on the diversity and structure of a soil bacterial community was studied under field conditions using temperature gradient gel electrophoresis (TGGE) and partial sequence analysis of PCR-amplified 16S rRNA gene. After four successive introductions of carbendazim at a level of 0.94 kg active ingredient (a.i.)/ha, the genetic diversity (expressed as Shannon index, H′) decreased from 1.43 in the control to 1.29 in treated soil. This harmful effect seems to increase with the concentration of carbendazim. The value of H' in the soil treated with carbendazim at 4.70 kg a.i./ha was reduced to 1.05 (P ≤ 0.05). The structure of soil bacterial community was also affected after four repeated applications of carbendazim at levels of 0.94, 1.88 and 4.70 kg a.i./ha, as seen in the relative intensities of the individual band. However, the bacterial community in carbendazim-treated soil recovered to that in the control 360 d after the first treatment. The results indicated that repeated applications of carbendazim could reduce soil microbial diversity and alter the bacterial community structure temporarily. 展开更多
关键词 CARBENDAZIM bacterial diversity temperature gradient gel electrophoresis phylogenetic analysis
下载PDF
Characterization of root-associated bacterial community structures in soybean and corn using locked nucleic acid(LNA) oligonucleotide-PCR clamping and 454 pyrosequencing 被引量:6
10
作者 YU Zhen-hua YU Jiang +3 位作者 Makoto Ikenaga Masao Sakai LIU Xiao-bing WANG Guang-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第8期1883-1891,共9页
supported in part by grants from the Strategic Priority Research Program of Chinese Academy of Sciences (XDB15010103);the National Natural Science Foundation of China (41201247)
关键词 bacterial diversity high-throughput sequencing corn soybean SSU rRNA genes
下载PDF
Variation of bacterial community associated with Phaeodactylum tricornutum in response to different inorganic nitrogen concentrations 被引量:1
11
作者 SHI Feng WEI Xiaoxue +2 位作者 FENG Jianfeng SUN Yingxue ZHU Lin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第12期118-128,共11页
Specific bacterial communities interact with phytoplankton in laboratory algal cultures. These communities influence phytoplankton physiology and metabolism by transforming and exchanging phytoplankton-derived organic... Specific bacterial communities interact with phytoplankton in laboratory algal cultures. These communities influence phytoplankton physiology and metabolism by transforming and exchanging phytoplankton-derived organic matter. Functional bacterial groups may participate in various critical nutrients fluxes within these associations, including nitrogen(N) metabolism. However, it is unclear how bacterial communities and the associated algae respond to changes of phycosphere N conditions. This response may have far-reaching implications for global nutrient cycling, algal bloom formation, and ecosystem function. Here, we identified changes in the bacterial communities associated with Phaeodactylum tricornutum when co-cultured with different forms and concentrations of N based on the Illumina HiSeq sequencing of 16 S rRNA amplicons.Phylogenetic analysis identified Proteobacteria and Bacteroidetes as the dominant phyla, accounting for 99.5% of all sequences. Importantly, bacterial abundance and community structure were more affected by algal abundance than by the form or concentration of inorganic N. The relative abundance of three gammaproteobacterial genera(Marinobacter, Algiphilus and Methylophaga) markedly increased in N-deficient cultures. Thus, some bacterial groups may play a role in the regulation of N metabolism when co-cultured with P.tricornutum. 展开更多
关键词 Phaeodactylum tricornutum nitrogen concentrations nitrogen forms bacterial diversity community structure GAMMAPROTEOBACTERIA
下载PDF
Impact of redox-stratification on the diversity and distribution of bacterial communities in sandy reef sediments in a microcosm 被引量:1
12
作者 高峥 王鑫 +2 位作者 Angelos K.HANNIDES Francis J.SANSONE 汪光义 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2011年第6期1209-1223,共15页
Relationships between microbial communities and geochemical environments are important in marine microbial ecology and biogeochemistry. Although biogeochemical redox stratification has been well documented in marine s... Relationships between microbial communities and geochemical environments are important in marine microbial ecology and biogeochemistry. Although biogeochemical redox stratification has been well documented in marine sediments, its impact on microbial communities remains largely unknown. In this study, we applied denaturing gradient gel electrophoresis (DGGE) and clone library construction to investigate the diversity and stratification of bacterial communities in redox-stratified sandy reef sediments in a microcosm. A total of 88 Operational Taxonomic Units (OTU) were identified from 16S rRNA clone libraries constructed from sandy reef sediments in a laboratory microcosm. They were members of nine phyla and three candidate divisions, including Proteobacteria (Alphas, Beta-, Gamma-, Delta-, and Epsilonproteobacteria), Aetinobacteria, Acidobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, Verrucomicrobia, Spirochaetes, and the candidate divisions WS3, SO31 and AO19. The vast majority of these phylotypes are related to clone sequences from other marine sediments, but OTUs of Epsilonproteobacteria and WS3 are reported for the first time from permeable marine sediments. Several other OTUs are potential new bacterial phylotypes because of their low similarity with reference sequences. Results from the 16S rRNA, gene clone sequence analyses suggested that bacterial communities exhibit clear stratification across large redox gradients in these sediments, with the highest diversity found in the anoxic layer (15-25 mm) and the least diversity in the suboxic layer (3-5 mm). Analysis of the nosZ, and amoA gene libraries also indicated the stratification of denitrifiers and nitrifiers, with their highest diversity being in the anoxic and oxic sediment layers, respectively. These results indicated that redox-stratification can affect the distribution of bacterial communities in sandy reef sediments. 展开更多
关键词 bacterial diversity bacterial stratification biogeochemical gradients sandy reef sediments
下载PDF
Modification of total and phosphorus mineralizing bacterial communities associated with Zea mays L.through plant development and fertilization regimes 被引量:1
13
作者 XIN Yuan-yuan Anisur RAHMAN +3 位作者 LI Hui-xiu XU Ting DING Guo-chun LI Ji 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第11期3026-3038,共13页
Harnessing the rhizospheric microbiome,including phosphorus mineralizing bacteria(PMB),is a promising technique for maintaining sustainability and productivity in intensive agricultural systems.However,it is unclear a... Harnessing the rhizospheric microbiome,including phosphorus mineralizing bacteria(PMB),is a promising technique for maintaining sustainability and productivity in intensive agricultural systems.However,it is unclear as to which beneficial taxonomic group populations in the rhizosphere are potentially associated with the changes in soil microbiomes shifted by fertilization regimes.Herein,we analyzed the diversity and community structure of total bacteria and PMB in the rhizosphere of maize(Zea mays L.)grown in soils under 25 years of four fertilization regimes(compost,biocompost,chemical,or nonfertilized)via selective culture and Illumina sequencing of the 16S rRNA genes.Plant development explained more variations(29 and 13%,respectively)in the composition of total bacteria and PMB in the rhizosphere of maize than the different fertilization regimes.Among those genera enriched in the rhizosphere of maize,the relative abundances of Oceanobacillus,Bacillus,Achromobacter,Ensifer,Paracoccus,Ramlibacter,and Luteimonas were positively correlated with those in the bulk soil.The relative abundance of Paracoccus was significantly higher in soils fertilized by compost or biocompost than the other soils.Similar results were also observed for PMB affiliated with Ensifer,Bacillus,and Streptomyces.Although plant development was the major factor in shaping the rhizospheric microbiome of maize,fertilization regimes might have modified beneficial rhizospheric microbial taxa such as Bacillus and Ensifer. 展开更多
关键词 organic fertilization bacterial diversity phosphorus mineralizing bacteria(PMB) Zea mays L. RHIZOSPHERE
下载PDF
The bacterial diversity and community composition altered in the oxygen minimum zone of the Tropical Western Pacific Ocean 被引量:1
14
作者 Qiqi SUN Jinming SONG +2 位作者 Xuegang LI Huamao YUAN Qidong WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2021年第5期1690-1704,共15页
The oxygen minimum zones(OMZs)are globally expanding,yet the variation pattern of microbial communities related to dissolved oxygen levels remain unclear.Spatial variability of bacterial diversity and community compos... The oxygen minimum zones(OMZs)are globally expanding,yet the variation pattern of microbial communities related to dissolved oxygen levels remain unclear.Spatial variability of bacterial diversity and community composition(repre sented by 16 S rRNA)of six stations was investigated within the water column in the seamount area of Tropical Western Pacific Ocean(TWPO)in May 2019.The seawater has dissolved oxygen(DO)concentration of 3.01-6.68 mg/L and the core of the oxygen minimum zones was located between the depths of 650 m and 1750 m.The bacterial alpha-diversity showed unimodal pattern with the decreasing DO with depths and peaked in the upper oxycline(UO)of OMZs.The bacterial community structure of the mixed layer(ML)and the bottom layer clustered and separated from each other,while those of UO and the OMZ core(OM)clustered and overlapped.Overall,bacterial community composition transitioned from being Alphaproteobacteria and Gammaproteobacteria-dominant in ML to being Gammaproteobacteria and Nitrososphaeria/Deltaproteobacteria-dominant in UO and OM,and then changed to being Clostridia and unidentified Actinobacteria-dominant in the bottom layer.Moreover,both bacterial alpha-diversity and the abundant classes fitted varying sectioned functions with DO.The DO solely explained 40.37%of the variation of bacterial community composition among layers(P<0.001).The predicted function profiling showed that the water column was predominant by chemoheterotrophy,cyanobacteria,and photoautotrophy in ML,by chemoheterotrophy and nitrate/sulfide cycling in UO and OM,and by chemoheterotrophy and ferme ntation in the bottom layer.Our findings revealed the DO-associated variation in bacterial diversity and community composition,and help to clarify the potential responses of microbes and their involved biogeochemical processes to the expansion and intensification of OMZs. 展开更多
关键词 bacterial diversity community composition oxygen minimum zones(OMZs) dissolved oxygen Tropical Western Pacific Ocean(TWPO)
下载PDF
Bacterial diversity in the sediment of Crescent Moon Spring,Kumtag Desert,Northwest China 被引量:1
15
作者 ZHANG Wei ZHANG Gaosen +5 位作者 WU Xiukun LIU Guangxiu DONG Zhibao QU Jianjun WANG Yun CHEN Tuo 《Journal of Arid Land》 SCIE CSCD 2017年第2期278-286,共9页
Desert lake, a unique oasis in desert ecosystems, harbours different bacterial communities. Thus, it is considered as a hub of bacterial diversity. In this study, bacterial diversity in the sediment of Crescent Moon S... Desert lake, a unique oasis in desert ecosystems, harbours different bacterial communities. Thus, it is considered as a hub of bacterial diversity. In this study, bacterial diversity in the sediment of Crescent Moon Spring, Kumtag Desert, Northwest China was analyzed using high-throughput amplicon pyrosequencing analysis. The sequences of the most abundant OUTs (Operational Taxonomic Units) in the sediment of Crescent Moon Spring were compared with the sequences of those most abundant OUTs of various origins from NCBI GenBank database to detect the origins of bacteria in the sediment of Crescent Moon Spring. Also, bacterial compositions between sediment of Crescent Moon Spring and other desert and lake ecosystems (including desert lakes) worldwide were compared using cluster analysis to determine the possible factors affecting bacterial compositions. In total, 11,855 sequences were obtained and 30 phyla were identified. At the phylum level, the dominant phylum was Proteobacteria with α-Proteobacteria being the first dominant class and the second dominant phylum was Planctomycetes. Our finding that α-Proteobacteria being the first dominant class of Proteobacteria and Planctomycetes being the second dominant phyla are somewhat contradictory with reports from other desert lake sediments. This difference could be resulted from water hydration and conductivity, as well as oligotrophic conditions of Crescent Moon Spring. At the genus level, Rhodobacter, Caldilinea, Planctomyces, and Porphyrobacterwere the dominant genera in the sediment of Crescent Moon Spring. Comparisons on sequences of the most abundant OUTs (including OTU3615, OTU6535, and OTU6646) between sediment of Crescent Moon Spring and various origins from NCBI GenBank database indicate that the origins of bacteria in the sediment of Crescent Moon Spring are likely from the underground water. Furthermore, cluster analysis on comparisons of bacteria compositions between sediment of Crescent Moon Spring and other desert and lake ecosystems (including desert lakes) worldwide shows that at regional scales, bacterial compositions may be mainly affected by geographical patterns, precipitation amounts, and pH values. Collectively, our results provide new knowledge on the bacterial diversity in desert lake ecosystems. 展开更多
关键词 bacterial diversity pyrosequencing analysis desert lake desert and lake ecosystems Crescent Moon Spring
下载PDF
Pyrosequencing-based assessment of bacterial community structure in mine soils affected by mining subsidence 被引量:4
16
作者 Li Yuanyuan Chen Longqian +2 位作者 Wen Hongyu Zhou Tianjian Zhang Ting 《International Journal of Mining Science and Technology》 SCIE EI 2014年第5期701-706,共6页
Based on the 454 pyrosequencing approach, this research evaluated the influence of coal mining subsi- dence on soil bacterial diversity and community structure in Chinese mining area. In order to characterize the bact... Based on the 454 pyrosequencing approach, this research evaluated the influence of coal mining subsi- dence on soil bacterial diversity and community structure in Chinese mining area. In order to characterize the bacterial community comparatively, this study selected a field experiment site with coal-excavated subsidence soils and an adjacent site with non-disturbed agricultural soils, respectively. The dataset com- prises 24512 sequences that are affiliated to the 7 phylogenetic groups: proteobacteria, actinobacteria, bacteroidetes, gemmatimonadetes, chlorofiexi, nitrospirae and unclassified phylum. Proteobacteria is the largest bacterial phylum in all samples, with a marked shift of the proportions of alpha-, beta-, and gammaproteobacteria. The results show that undisturbed soils are relatively more diverse and rich than subsided soils, and differences in abundances of dominant taxonomic groups between the two soil groups are visible. Compared with the control, soil nutrient contents decline achieves significant level in subsided soils. Correlational analysis showed bacterial diversity indices have significantly positive corre- lation with soil organic matter, total N, total P, and available K. but in negative relation with soil salinity. Ground subsidence noticeably affects the diversity and composition of soil microbial community. Degen- eration of soil fertility and soil salinization inhibits the sole-carbon-source metabolic ability of microbial community, leading to the simplification of advantage species and uneven distribution of microbial spe- cies. This work demonstrates the great potential of pyrosequencing technique in revealing microbial diversity and presents background information of microbial communities of mine subsidence land. 展开更多
关键词 Mining subsidence land Soil physicochemical properties 454 pyrosequencing bacterial diversity
下载PDF
Distribution of Bacterial Communities in Petroleum-Contaminated Soils from the Dagang Oilfield, China 被引量:1
17
作者 Xueke Feng Zhen Liu +1 位作者 Xiaoqiang Jia Wenyu Lu 《Transactions of Tianjin University》 EI CAS 2020年第1期22-32,共11页
Diversity in bacterial communities was investigated along a petroleum hydrocarbon content gradient(0-0.4043 g/g)in surface(5-10 cm)and subsurface(35-40 cm)petroleum-contaminated soil samples from the Dagang Oilfield,C... Diversity in bacterial communities was investigated along a petroleum hydrocarbon content gradient(0-0.4043 g/g)in surface(5-10 cm)and subsurface(35-40 cm)petroleum-contaminated soil samples from the Dagang Oilfield,China.Using 16S rRNA Illumina high-throughput sequencing technology and several statistical methods,the bacterial diversity of the soil was studied.Subsequently,the environmental parameters were measured to analyze its relationship with the community variation.Nonmetric multidimensional scaling and analysis of similarities indicated a significant difference in the structure of the bacterial community between the nonpetroleum-contaminated surface and subsurface soils,but no differences were observed in different depths of petroleum-contaminated soil.Meanwhile,many significant correlations were obtained between diversity in soil bacterial community and physicochemical properties.Total petroleum hydrocarbon,total organic carbon,and total nitrogen were the three important factors that had the greatest impacts on the bacterial community distribution in the long-term petroleum-contaminated soils.Our research has provided references for the bacterial community distribution along a petroleum gradient in both surface and subsurface petroleum-contaminated soils of oilfield areas. 展开更多
关键词 Petroleum-contaminated soil Dagang Oilfield bacterial community diversity 16s rRNA Illumina sequencing Environmental factor correlation analysis
下载PDF
Effects of Continuous Plastic Film Mulching on Soil Bacterial Diversity, Organic Matter and Rice Water Use Efficiency 被引量:2
18
作者 Meiyan Wu Ruochao Hao Lianghuan Wu 《Journal of Geoscience and Environment Protection》 2016年第4期1-6,共6页
Two field experiments were conducted to study the effects of 6-year plastic film mulching on bacterial diversity, organic matter of paddy soil and water use efficiency on different soils with great environmental varia... Two field experiments were conducted to study the effects of 6-year plastic film mulching on bacterial diversity, organic matter of paddy soil and water use efficiency on different soils with great environmental variabilities in Zhejiang Province, China, under non-flooding condition. The experiment started in 2001 at two sites with one rice crop annually. Three treatments included plastic film mulching with no flooding (PM), no plastic film mulching and no flooding (UM), and traditional flooding management (TF). Soil samples were collected and analyzed for bacterial diversity by DGGE and organic matter content, and water use efficiency (WUE) was calculated. The results showed that PM treatment favored the development of a more total bacterial community compared with TF management, the total number of bands was 33.3, 31.7 at tiller stage and heading stage (p < 0.05*). Hence, organic matter content was decreased by 36.7% and 51.4% under PM at two sites. PM also produced similar rice grain yield as TF at Duntou site and Dingqiao site, the average was 7924 kg?ha?1 and 7015 kg?ha?1 for PM and 8150 kg?ha?1 and 6990 kg?ha?1 for TF, respectively. Compared to TF, WUE and irrigation water use efficiency were increased significantly by 70.2% - 80.4% and 273.7% - 1300.0% for PM. It is essential to develop the water-saving agriculture. 展开更多
关键词 Rice (Oryza sativa L.) Water Use Efficiency Water-Saving Agriculture bacterial Diversity
下载PDF
Microbiome Diversity Analysis of the Bacterial Community in Idah River, Kogi State, Nigeria 被引量:1
19
作者 Deborah Ebunoluwa Adedire Adijat Ozohu Jimoh +10 位作者 Zainab Kashim-Bello Bilyaminu Adam Wase Shuaibu Oluwabukola Atinuke Popoola Kabiru Isa Pate Onyinye Stainless Uzor Eno Etingwa Jumoke Florence Joda Oyetola Olanrewaju Opaleye Victoria Adejoke Ogunlowo Kehinde Rukayyat Adeniran Oyekanmi Nashiru 《Advances in Microbiology》 2022年第5期343-362,共20页
The analysis of bacterial diversity in aquatic systems particularly in rivers, lakes, and streams can provide useful data on the effect of anthropogenic activities on such water bodies to humans and fishes. Idah River... The analysis of bacterial diversity in aquatic systems particularly in rivers, lakes, and streams can provide useful data on the effect of anthropogenic activities on such water bodies to humans and fishes. Idah River, the focal point of this study, is an offshoot of the two major Nigerian rivers characterized by observed human activities and pollution sources. Water samples were collected from four designated sites and assessed for their bacterial assemblages and structure, using PacBio Single-Molecule Real-Time (SMRT) sequencing technology. The full length of the 16S rRNA gene was sequenced, and Amplicon Sequence Variants were generated using the DADA2 workflow optimised for PacBio long-read amplicons in Rstudio. A total of 8751 high-quality reads obtained were taxonomically classified as 24 phyla, 42 classes, 84 orders, 125 families, 156 genera, and 106 species. Taxonomical composition revealed Proteobacteria as the most abundant phyla across all sample sites. At the genera level, Azospira (57.03%) was the most dominant ASV in Docking Point A, while Acinetobacter (66.67%) was the most abundant ASV in Docking Point B. In Idah Axis Confluence, hgcl clade (65.66%) was the most prevalent ASV, whereas Holophaga (42.86%) was the most common ASV in Idah Axis Midstream. Genera analysis also revealed that 12.9% of the total ASVs were discovered across all sample sites. Among these were pathogenic bacteria, reducers, and degraders of domestic and animal wastes. Observed results provide evidence that sampled sites of Idah River are contaminated, most likely through constant human activities and thus, could have an impact on resident fishes as well. This study, therefore, agrees with a previous report from the river, which used standard microbial procedures. However, next-generation sequencing techniques employed revealed more bacterial community than the former, including unresolved taxonomic sequences that may be novel. 展开更多
关键词 Idah River Dada2 PacBio Sequencing bacterial Diversity Amplicon Sequence Variants
下载PDF
Climate and salinity drive soil bacterial richness and diversity in sandy grasslands in China
20
作者 ChengChen Pan XiaoYa Yu +2 位作者 Qi Feng YuLin Li ShiLong Ren 《Research in Cold and Arid Regions》 CSCD 2022年第3期182-195,共14页
Bacteria constitute a large proportion of the biodiversity in soils and control many important processes in terrestrial ecosystems.However,our understanding of the interactions between soil bacteria and environmental ... Bacteria constitute a large proportion of the biodiversity in soils and control many important processes in terrestrial ecosystems.However,our understanding of the interactions between soil bacteria and environmental factors remains limited,especially in sensitive and fragile ecosystems.In this study,geographic patterns of bacterial diversity across four sandy grasslands along a 1,600 km north-south transect in northern China were characterized by high-throughput 16S rRNA gene sequencing.Then,we analyzed the driving factors behind the patterns in bacterial diversity.The results show that of the 21 phyla detected,the most abundant were Proteobacteria,Actinobacteria,Acidobacteria and Fir‐micutes(average relative abundance>5%).Soil bacterial operational taxonomic unit(OTU)numbers(richness)and Faith's phylogenetic diversity(diversity)were highest in the Otindag Sandy Land and lowest in the Mu Us Sandy Land.Soil electrical conductivity(EC)was the most influential factor driving bacterial richness and diversity.The bacterial communities differed significantly among the four sandy grasslands,and the bacterial community structure was signifi‐cantly affected by environmental factors and geographic distance.Of the environmental variables examined,climatic factors(mean annual temperature and precipitation)and edaphic properties(pH and EC)explained the highest propor‐tion of the variation in bacterial community structure.Biotic factors such as plant species richness and aboveground bio‐mass exhibited weak but significant associations with bacterial richness and diversity.Our findings revealed the impor‐tant role of climate and salinity factors in controlling bacterial richness and diversity;understanding these roles is critical for predicting the impacts of climate change and promoting sustainable management strategies for ecosystem services in these sandy lands. 展开更多
关键词 sandy land soil bacterial diversity BIOGEOGRAPHY climate change SALINITY
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部