Gram-staining distinguishes bacteria into two major groups,Gram-positive and Gram-negative bacteria,and has become an essential technique in microbiology.However,Gram-staining is not compatible with living cells and t...Gram-staining distinguishes bacteria into two major groups,Gram-positive and Gram-negative bacteria,and has become an essential technique in microbiology.However,Gram-staining is not compatible with living cells and thus limits its applications.Here,we report the development of a polymyxin B-based fluorescent probe that enables selective labeling of Gram-negative in the living microbiota samples.We first synthesized the polymyxin B-Cy3 conjugate and confirmed its specificity for labeling Gram-negative bacteria.In combination with a previously developed Gram-positive-specific fluorescent probe,we demonstrate two-color imaging of Gram-positive and Gram-negative bacteria in various kinds living microbiotas,including mouse gut,human oral,soil,and crude oil microbiotas,with high selectivity and coverage.Finally,a pilot use of the probes in staining bacteria on heat-fixed sputum smear was also demonstrated,showing its potentials in clinical microbiology.Our method provides a versatile tool for distinguishing Gram-positive and Gram-negative bacteria in both basic research and clinical settings.展开更多
Quantum dots(QDs), with several unique optical and chemical features, are becoming desirable fluorescent tags for the biological applications that require long-term and highly sensitive imaging.Besides, the conjugat...Quantum dots(QDs), with several unique optical and chemical features, are becoming desirable fluorescent tags for the biological applications that require long-term and highly sensitive imaging.Besides, the conjugation of various functional biomolecules to QDs has enabled wide applications of QDs in biological imaging. This review focuses on the following four types of QDs: semiconductor quantum dots(semiconductor QDs), carbon nanodots(CDs), silicon quantum dots(SiQDs), and polymer dots(Pdots), and summarizes the recent advancements of using these QDs in imaging microorganisms including viruses, bacteria, and fungi. We hope that this review will promote the development of new fluorescent QDs for microbial imaging and extend the applications of QD-based imaging techniques in cell biology and beyond.展开更多
基金supported by the National Natural Science Foundation of China (21672013, 21425204, 21521003)the National Key Research and Development Projects (2016YFA0501500)
文摘Gram-staining distinguishes bacteria into two major groups,Gram-positive and Gram-negative bacteria,and has become an essential technique in microbiology.However,Gram-staining is not compatible with living cells and thus limits its applications.Here,we report the development of a polymyxin B-based fluorescent probe that enables selective labeling of Gram-negative in the living microbiota samples.We first synthesized the polymyxin B-Cy3 conjugate and confirmed its specificity for labeling Gram-negative bacteria.In combination with a previously developed Gram-positive-specific fluorescent probe,we demonstrate two-color imaging of Gram-positive and Gram-negative bacteria in various kinds living microbiotas,including mouse gut,human oral,soil,and crude oil microbiotas,with high selectivity and coverage.Finally,a pilot use of the probes in staining bacteria on heat-fixed sputum smear was also demonstrated,showing its potentials in clinical microbiology.Our method provides a versatile tool for distinguishing Gram-positive and Gram-negative bacteria in both basic research and clinical settings.
基金the National Natural Science Foundation of China (No. 21673037)Natural Science Foundation of Jiangsu Province (No. BK20170078)Innovative and Entrepreneurial Talent Recruitment Program of Jiangsu Province, Fundamental Research Funds for the Central Universities, and Scientific Research Foundation of Graduate School of Southeast University (No. YBJJ1778) for financial support
文摘Quantum dots(QDs), with several unique optical and chemical features, are becoming desirable fluorescent tags for the biological applications that require long-term and highly sensitive imaging.Besides, the conjugation of various functional biomolecules to QDs has enabled wide applications of QDs in biological imaging. This review focuses on the following four types of QDs: semiconductor quantum dots(semiconductor QDs), carbon nanodots(CDs), silicon quantum dots(SiQDs), and polymer dots(Pdots), and summarizes the recent advancements of using these QDs in imaging microorganisms including viruses, bacteria, and fungi. We hope that this review will promote the development of new fluorescent QDs for microbial imaging and extend the applications of QD-based imaging techniques in cell biology and beyond.