Rxol cloned from maize is a non-host gene resistant to bacterial leaf streak of rice. pCAMBIA1305-1 with Rxo1 was digested with Sca I and NgoM IV and the double right-border binary vector pMNDRBBin6 was digested with ...Rxol cloned from maize is a non-host gene resistant to bacterial leaf streak of rice. pCAMBIA1305-1 with Rxo1 was digested with Sca I and NgoM IV and the double right-border binary vector pMNDRBBin6 was digested with Hpa I and Xma I. pMNDRBBin6 carrying the gene Rxo1 was acquired by ligation of blunt-end and cohesive end. The results of PCR, restriction enzyme analysis and sequencing indicated that the Rxo1 gene had been cloned into pMNDRBBin6. This double right-border binary vector, named as pMNDRBBin6-Rxol, will play a role in breeding marker-free plants resistant to bacterial leaf streak of rice by genetic transformation.展开更多
Identification of immunity-associated leucine-rich repeat receptor-like protein kinases(LRR-RLK) is critical to elucidate the LRR-RLK mediated mechanism of plant immunity.Here,we reported the map-based cloning of a no...Identification of immunity-associated leucine-rich repeat receptor-like protein kinases(LRR-RLK) is critical to elucidate the LRR-RLK mediated mechanism of plant immunity.Here,we reported the map-based cloning of a novel rice SPOTTED-LEAF 41(Os SPL41) encoding a putative LRR-RLK protein(Os LRR-RLK41/Os SPL41) that regulated disease responses to the bacterial blight pathogen Xanthomonas oryzae pv.oryzae(Xoo).An 8-bp insertion at position 865 bp in a mutant spotted-leaf 41(spl41) allele led to the formation of purple-brown lesions on leaves.Functional complementation by the wild type allele(Os SPL41) can rescue the mutant phenotype,and the complementary lines showed similar performance to wild type in a number of agronomic,physiological and molecular indices.Os SPL41 was constitutively expressed in all tissues tested,and Os SPL41 contains a typical transmembrane domain critical for its localization to the cell membrane.The mutant exhibited an enhanced level of resistance to Xoo in companion of markedly up-regulated expression of pathogenesis-related genes such as Os PR10a,Os PAL1 and Os NPR1,while the level of salicylic acid was significantly increased in spl41.In contrast,the over-expression lines exhibited a reduced level of H_(2)O_(2) and were much susceptible to Xoo with down-regulated expression of pathogenesis-related genes.These results suggested that Os SPL41 might negatively regulate plant immunity through the salicylic acid signaling pathway in rice.展开更多
Lipoxygenase 3 (LOX3) is a major component of the LOX isozymes in mature rice seeds. To investigate the role of LOX3 gene under stresses, a plant expression vector containing antisense cDNA of LOX3 was constructed. Ri...Lipoxygenase 3 (LOX3) is a major component of the LOX isozymes in mature rice seeds. To investigate the role of LOX3 gene under stresses, a plant expression vector containing antisense cDNA of LOX3 was constructed. Rice varieties Wuyunjing 7 and Kasalath were transformed by the Agrobacterium-mediated method and transgenic rice plants were generated. PCR and Southern blot results showed that the antisense LOX3 gene was integrated into the rice genome. Analyses of embryo LOX3 deletion and semi-quantitative RT-PCR confirmed the antisense suppression of LOX3 gene in transgenic plants. The T2 antisense plants of LOX3 were sensitive to drought stress, rice blast and bacterial blight compared with non-transgenic plants. These results suggest that the LOX3 gene might function in response to stresses.展开更多
文摘Rxol cloned from maize is a non-host gene resistant to bacterial leaf streak of rice. pCAMBIA1305-1 with Rxo1 was digested with Sca I and NgoM IV and the double right-border binary vector pMNDRBBin6 was digested with Hpa I and Xma I. pMNDRBBin6 carrying the gene Rxo1 was acquired by ligation of blunt-end and cohesive end. The results of PCR, restriction enzyme analysis and sequencing indicated that the Rxo1 gene had been cloned into pMNDRBBin6. This double right-border binary vector, named as pMNDRBBin6-Rxol, will play a role in breeding marker-free plants resistant to bacterial leaf streak of rice by genetic transformation.
基金supported by the National Natural Science Foundation of China(Grant No.32072049)the Central Public-Interest Scientific Institution Basal Research Fund, China(Grant No.CPSIBRF-CNRRI-202203)。
文摘Identification of immunity-associated leucine-rich repeat receptor-like protein kinases(LRR-RLK) is critical to elucidate the LRR-RLK mediated mechanism of plant immunity.Here,we reported the map-based cloning of a novel rice SPOTTED-LEAF 41(Os SPL41) encoding a putative LRR-RLK protein(Os LRR-RLK41/Os SPL41) that regulated disease responses to the bacterial blight pathogen Xanthomonas oryzae pv.oryzae(Xoo).An 8-bp insertion at position 865 bp in a mutant spotted-leaf 41(spl41) allele led to the formation of purple-brown lesions on leaves.Functional complementation by the wild type allele(Os SPL41) can rescue the mutant phenotype,and the complementary lines showed similar performance to wild type in a number of agronomic,physiological and molecular indices.Os SPL41 was constitutively expressed in all tissues tested,and Os SPL41 contains a typical transmembrane domain critical for its localization to the cell membrane.The mutant exhibited an enhanced level of resistance to Xoo in companion of markedly up-regulated expression of pathogenesis-related genes such as Os PR10a,Os PAL1 and Os NPR1,while the level of salicylic acid was significantly increased in spl41.In contrast,the over-expression lines exhibited a reduced level of H_(2)O_(2) and were much susceptible to Xoo with down-regulated expression of pathogenesis-related genes.These results suggested that Os SPL41 might negatively regulate plant immunity through the salicylic acid signaling pathway in rice.
基金supported by the grants from the National Basic Research Program of China (Grant No. 2004CB117204 and No. 2006CB100200).
文摘Lipoxygenase 3 (LOX3) is a major component of the LOX isozymes in mature rice seeds. To investigate the role of LOX3 gene under stresses, a plant expression vector containing antisense cDNA of LOX3 was constructed. Rice varieties Wuyunjing 7 and Kasalath were transformed by the Agrobacterium-mediated method and transgenic rice plants were generated. PCR and Southern blot results showed that the antisense LOX3 gene was integrated into the rice genome. Analyses of embryo LOX3 deletion and semi-quantitative RT-PCR confirmed the antisense suppression of LOX3 gene in transgenic plants. The T2 antisense plants of LOX3 were sensitive to drought stress, rice blast and bacterial blight compared with non-transgenic plants. These results suggest that the LOX3 gene might function in response to stresses.
基金This work was supported by the National Natural Science Foundation of China (No. 30470922) the Natural Science Foundation of Hubei Province (No. 2004ABA117) the National Program of High Technology Development of China (No. 2001AA227151).