期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Bacterial outer membrane vesicles in the fight against cancer
1
作者 Yiming Meng Cuicui Kong +2 位作者 Yushu Ma Jing Sun Guirong Zhang 《Chinese Medical Journal》 SCIE CAS CSCD 2024年第18期2169-2181,共13页
Bacterial outer membrane vesicles(OMVs)are diminutive vesicles naturally released by Gram-negative bacteria.These vesicles possess distinctive characteristics that attract attention for their potential use in drug adm... Bacterial outer membrane vesicles(OMVs)are diminutive vesicles naturally released by Gram-negative bacteria.These vesicles possess distinctive characteristics that attract attention for their potential use in drug administration and immunotherapy in cancer treatment.Therapeutic medicines may be delivered via OMVs directly to the tumor sites,thereby minimizing exposure to healthy cells and lowering the risk of systemic toxicity.Furthermore,the activation of the immune system by OMVs has been demonstrated to facilitate the recognition and elimination of cancer cells,which makes them a desirable tool for immunotherapy.They can also be genetically modified to carry specific antigens,immunomodulatory compounds,and small interfering RNAs,enhancing the immune response to cancerous cells and silencing genes associated with disease progression.Combining OMVs with other cancer treatments like chemotherapy and radiation has shown promising synergistic effects.This review highlights the crucial role of bacterial OMVs in cancer,emphasizing their potential as vectors for novel cancer targeted therapies.As researchers delve deeper into the complexities of these vesicles and their interactions with tumors,there is a growing sense of optimism that this avenue of study will bring positive outcomes and renewed hope to cancer patients in the foreseeable future. 展开更多
关键词 bacterial outer membrane vesicles Tumor microenvironment IMMUNOTHERAPY PHOTOTHERAPY NANOPARTICLE
原文传递
Bacterial outer membrane vesicles-based therapeutic platform eradicates triple-negative breast tumor by combinational photodynamic/chemo-/immunotherapy 被引量:3
2
作者 Yongjiang Li Junyong Wu +7 位作者 Xiaohan Qiu Suhe Dong Jun He Jihua Liu Wenjie Xu Si Huang Xiongbin Hu Da-Xiong Xiang 《Bioactive Materials》 SCIE CSCD 2023年第2期548-560,共13页
Bacterial outer membrane vesicles(OMVs)are potent immuno-stimulating agents and have the potentials to be bioengineered as platforms for antitumor nanomedicine.In this study,OMVs are demonstrated as promising antitumo... Bacterial outer membrane vesicles(OMVs)are potent immuno-stimulating agents and have the potentials to be bioengineered as platforms for antitumor nanomedicine.In this study,OMVs are demonstrated as promising antitumor therapeutics.OMVs can lead to beneficial M2-to-M1 polarization of macrophages and induce pyroptosis to enhance antitumor immunity,but the therapeutic window of OMVs is narrow for its toxicity.We propose a bioengineering strategy to enhance the tumor-targeting ability of OMVs by macrophage-mediated delivery and improve the antitumor efficacy by co-loading of photosensitizer chlorin e6(Ce6)and chemotherapeutic drug doxorubicin(DOX)into OMVs as a therapeutic platform.We demonstrate that systemic injection of the DOX/Ce6-OMVs@M therapeutic platform,providing combinational photodynamic/chemo-/immunotherapy,eradicates triple-negative breast tumors in mice without side effects.Importantly,this strategy also effectively prevents tumor metastasis to the lung.This OMVs-based strategy with bioengineering may serve as a powerful therapeutic platform for a synergic antitumor therapy. 展开更多
关键词 bacterial outer membrane vesicles BIOENGINEERING Drug delivery MACROPHAGE PYROPTOSIS Tumor microenvironment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部