The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different pol...The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different polymers such as Sodium Alginate(SA),Sodium Alginate/Poly(Vinyl Alcohol)(SA/PVA),and Bushnell Haas Agar(BHA).In addition to SA and SA/PVA,which are cost-effective,non-toxic and have different functional groups,BHA,which is frequently encountered in laboratory-scale studies but has not been used as an entrapment material until now.Based on these,the polymers with different surface morphologies and chemical compositions were analyzed by SEM and FT-IR.While the petroleum removal efficiency was higher with the entrapped bacterial consortia than with the free one,BHA-entrapped bacterial consortium enhanced the petroleum removal more than SA and SA/PVA.Accordingly,the degradation rate of bacterial consortia entrapped with BHA was 2.039 day^(-1),SA/PVA was 1.560,SA was 0.993,the half-life period of BHA-entrapped bacterial consortia is quite low(t_(1/2)=0.339)compared with SA(t_(1/2)=0.444)and SA/PVA(t_(1/2)=0.697).The effects of the four main factors such as:amount of BHA(0.5,1,1.5,2,2.5,3 g),disc size(4,5,6,7,8 mm),inoculum concentration(1,2.5,5,7.5,10 mL),and incubation period on petroleum removal were also investigated.The maximum petroleum removal(94.5%)was obtained at≥2.5 mL of bacterial consortium entrapped in 2 g BHA with a 7 mm disc size at 168 h and the results were also confirmed by statistical analysis.Although a decrease was observed during the reuse of bacterial consortium entrapped in BHA,the petroleum removal was still above 50%at 10th cycle.Based on GC-MS analysis,the removal capacity of BHA-entrapped consortium was over 90%for short-chain n-alkanes and 80%for medium-chain n-alkanes.Overall,the obtained data are expected to provide a potential guideline in cleaning up the large-scale oil pollution in the future.Since there has been no similar study investigating petroleum removal with the bacterial consortia entrapped with BHA,this novel entrapment material can potentially be used in the treatment of petroleum pollution in advanced remediation studies.展开更多
The flocculating activity of a novel bioflocculant MMF1 produced by multiple-microorganism consortia MM1 was investigated. MM1 was composed of strain BAFRT4 identified as Staphylococcus sp. and strain CYGS1 identified...The flocculating activity of a novel bioflocculant MMF1 produced by multiple-microorganism consortia MM1 was investigated. MM1 was composed of strain BAFRT4 identified as Staphylococcus sp. and strain CYGS1 identified as Pseudomonas sp. The flocculating activity of MMF1 isolated from the screening medium was 82.9%, which is remarkably higher than that of the bioflocculant produced by either of the strains under the same condition. Brewery wastewater was also used as the carbon source for MM1, and the cost-effective production medium for MM1 mainly comprised 1.0 L brewery water (chemical oxygen demand (COD) 5000 mg/L), 0.5 g/L urea, 0.5 g/L yeast extract, and 0.2 g/L (NH4)2SO4. The optimal conditions for the production of MMF1 was inoculum size 2%, initial pH 6.0, cultivating temperature 30℃, and shaking speed 160 r/min, under which the flocculating activity of the MMF1 reached 96.8%. Fifteen grams of purified bioflocculant could be recovered from 1.0 L of fermentation broth. MMF1 was identified as a macromolecular substance containing both protein and polysaccharide. It showed good flocculating performance in treating indigotin printing and dyeing wastewater, and the maximal removal efficiencies of COD and chroma were 79.2% and 86.5%, respectively.展开更多
In this study, a pilot wastewater treatment plant was used to evaluate the co-treatment of biological-staining residues and domestic wastewater under non-sterile conditions. A novel microbial consortia formed by Trame...In this study, a pilot wastewater treatment plant was used to evaluate the co-treatment of biological-staining residues and domestic wastewater under non-sterile conditions. A novel microbial consortia formed by Trametes versicolor, Trametes sp, Pleurotus ostreatus, Pseudomonas fluorescens, Pseudomonas azotoformans, Pseudomonas sp, Enterobacter xianfangensis and Bacillus subtillis was inoculated in an extended aeration type bio-reactor. The treatment units were operated during three consecutive cycles during a period of 147 h. After the last operating cycle, the concentrations of Chemical Oxygen Demand, Biochemical Oxygen Demand, Color Units, Total suspended solids, and the pH value were 1695 mg/L, 105 mg/L, 106 CU, 5), 1367 (CU), 566 mg/L (TSS) and 7.0 (pH) respectively. The reduction of pollutants load was related with the ratio of the two types of wastewater (3.5:0.5) combined to increase biodegradability, the concentration of fungi and bacteria used in the consortia (30 × 103 - 55 × 106 CUF/mL Total Fungi and 70 × 107 - 83 × 108 CFU/mL of Total Bacteria) and ligninolytic enzymes production, Laccase (13 - 96 U/L), MnP (9.8 - 39 U/L) and LiP (0.3 - 5.3 U/L). The post-treated effluent was used as irrigation water. Lolium perenne plants were watered during 60 days with post-treated effluent. The results of root weight showed that there are significant differences between the initial water and the effluent obtained after the operational cycles (p = 0.00470). The highest root weights (1 - 1.12 g) were found in plants irrigated with water obtained from the last treatment cycle.展开更多
By comparing the related total cost before and after the formation of purchasing consortia, the impetus of formation is analyzed. Moreover, pointed to different transportation and storage policies, the formation impet...By comparing the related total cost before and after the formation of purchasing consortia, the impetus of formation is analyzed. Moreover, pointed to different transportation and storage policies, the formation impetus is studied in detail and some conclusions are arrived at. Finally the research orientation of the formation impetus of purchasing consortia is exploratory presented under more complicated conditions, and purchasing consortia in more cross-zones and multi-segment will occur in China.展开更多
文摘The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different polymers such as Sodium Alginate(SA),Sodium Alginate/Poly(Vinyl Alcohol)(SA/PVA),and Bushnell Haas Agar(BHA).In addition to SA and SA/PVA,which are cost-effective,non-toxic and have different functional groups,BHA,which is frequently encountered in laboratory-scale studies but has not been used as an entrapment material until now.Based on these,the polymers with different surface morphologies and chemical compositions were analyzed by SEM and FT-IR.While the petroleum removal efficiency was higher with the entrapped bacterial consortia than with the free one,BHA-entrapped bacterial consortium enhanced the petroleum removal more than SA and SA/PVA.Accordingly,the degradation rate of bacterial consortia entrapped with BHA was 2.039 day^(-1),SA/PVA was 1.560,SA was 0.993,the half-life period of BHA-entrapped bacterial consortia is quite low(t_(1/2)=0.339)compared with SA(t_(1/2)=0.444)and SA/PVA(t_(1/2)=0.697).The effects of the four main factors such as:amount of BHA(0.5,1,1.5,2,2.5,3 g),disc size(4,5,6,7,8 mm),inoculum concentration(1,2.5,5,7.5,10 mL),and incubation period on petroleum removal were also investigated.The maximum petroleum removal(94.5%)was obtained at≥2.5 mL of bacterial consortium entrapped in 2 g BHA with a 7 mm disc size at 168 h and the results were also confirmed by statistical analysis.Although a decrease was observed during the reuse of bacterial consortium entrapped in BHA,the petroleum removal was still above 50%at 10th cycle.Based on GC-MS analysis,the removal capacity of BHA-entrapped consortium was over 90%for short-chain n-alkanes and 80%for medium-chain n-alkanes.Overall,the obtained data are expected to provide a potential guideline in cleaning up the large-scale oil pollution in the future.Since there has been no similar study investigating petroleum removal with the bacterial consortia entrapped with BHA,this novel entrapment material can potentially be used in the treatment of petroleum pollution in advanced remediation studies.
基金Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education(No.20050247016)the Program forNew Century Excellent Talents in University(NCET-05-0387).
文摘The flocculating activity of a novel bioflocculant MMF1 produced by multiple-microorganism consortia MM1 was investigated. MM1 was composed of strain BAFRT4 identified as Staphylococcus sp. and strain CYGS1 identified as Pseudomonas sp. The flocculating activity of MMF1 isolated from the screening medium was 82.9%, which is remarkably higher than that of the bioflocculant produced by either of the strains under the same condition. Brewery wastewater was also used as the carbon source for MM1, and the cost-effective production medium for MM1 mainly comprised 1.0 L brewery water (chemical oxygen demand (COD) 5000 mg/L), 0.5 g/L urea, 0.5 g/L yeast extract, and 0.2 g/L (NH4)2SO4. The optimal conditions for the production of MMF1 was inoculum size 2%, initial pH 6.0, cultivating temperature 30℃, and shaking speed 160 r/min, under which the flocculating activity of the MMF1 reached 96.8%. Fifteen grams of purified bioflocculant could be recovered from 1.0 L of fermentation broth. MMF1 was identified as a macromolecular substance containing both protein and polysaccharide. It showed good flocculating performance in treating indigotin printing and dyeing wastewater, and the maximal removal efficiencies of COD and chroma were 79.2% and 86.5%, respectively.
文摘In this study, a pilot wastewater treatment plant was used to evaluate the co-treatment of biological-staining residues and domestic wastewater under non-sterile conditions. A novel microbial consortia formed by Trametes versicolor, Trametes sp, Pleurotus ostreatus, Pseudomonas fluorescens, Pseudomonas azotoformans, Pseudomonas sp, Enterobacter xianfangensis and Bacillus subtillis was inoculated in an extended aeration type bio-reactor. The treatment units were operated during three consecutive cycles during a period of 147 h. After the last operating cycle, the concentrations of Chemical Oxygen Demand, Biochemical Oxygen Demand, Color Units, Total suspended solids, and the pH value were 1695 mg/L, 105 mg/L, 106 CU, 5), 1367 (CU), 566 mg/L (TSS) and 7.0 (pH) respectively. The reduction of pollutants load was related with the ratio of the two types of wastewater (3.5:0.5) combined to increase biodegradability, the concentration of fungi and bacteria used in the consortia (30 × 103 - 55 × 106 CUF/mL Total Fungi and 70 × 107 - 83 × 108 CFU/mL of Total Bacteria) and ligninolytic enzymes production, Laccase (13 - 96 U/L), MnP (9.8 - 39 U/L) and LiP (0.3 - 5.3 U/L). The post-treated effluent was used as irrigation water. Lolium perenne plants were watered during 60 days with post-treated effluent. The results of root weight showed that there are significant differences between the initial water and the effluent obtained after the operational cycles (p = 0.00470). The highest root weights (1 - 1.12 g) were found in plants irrigated with water obtained from the last treatment cycle.
文摘By comparing the related total cost before and after the formation of purchasing consortia, the impetus of formation is analyzed. Moreover, pointed to different transportation and storage policies, the formation impetus is studied in detail and some conclusions are arrived at. Finally the research orientation of the formation impetus of purchasing consortia is exploratory presented under more complicated conditions, and purchasing consortia in more cross-zones and multi-segment will occur in China.