Based on the theory of biological control of Saprolegnia ferax,antagonism test of nine strains of Bacillus sp. to S. ferax JL was carried out. Bacillus sp.BA1 was screened to have significantly inhibitory effects on t...Based on the theory of biological control of Saprolegnia ferax,antagonism test of nine strains of Bacillus sp. to S. ferax JL was carried out. Bacillus sp.BA1 was screened to have significantly inhibitory effects on the growth of S. ferax JL( P 【 0. 05). Then,the effects of Bacillus sp. BA1 on different sources of S. ferax were carried out. Results showed that BA1 also had significantly inhibitory effects on S. ferax 6#,10# and S2( P 【 0. 05). Sequence of 16 S r DNA of BA1 was analyzed; and homologous alignment analysis showed that BA1 had more than 99% similarity with Bacillus cereus. Therefore,it could be concluded that strain BA1 was B. cereus,which significantly inhibited the growth of S. ferax and could be used as the biological control agent for S. ferax diseases in aquaculture.展开更多
基金Supported by the Industry-Academia-Research Project of Guangdong Province(2010B090400002)Special Fund for Modern Agricultural Industry Technology System(NYCYTX-49-17)
文摘Based on the theory of biological control of Saprolegnia ferax,antagonism test of nine strains of Bacillus sp. to S. ferax JL was carried out. Bacillus sp.BA1 was screened to have significantly inhibitory effects on the growth of S. ferax JL( P 【 0. 05). Then,the effects of Bacillus sp. BA1 on different sources of S. ferax were carried out. Results showed that BA1 also had significantly inhibitory effects on S. ferax 6#,10# and S2( P 【 0. 05). Sequence of 16 S r DNA of BA1 was analyzed; and homologous alignment analysis showed that BA1 had more than 99% similarity with Bacillus cereus. Therefore,it could be concluded that strain BA1 was B. cereus,which significantly inhibited the growth of S. ferax and could be used as the biological control agent for S. ferax diseases in aquaculture.