Phasor measurement units(PMUs) can provide real-time measurement data to construct the ubiquitous electric of the Internet of Things. However, due to complex factors on site, PMU data can be easily compromised by inte...Phasor measurement units(PMUs) can provide real-time measurement data to construct the ubiquitous electric of the Internet of Things. However, due to complex factors on site, PMU data can be easily compromised by interference or synchronization jitter. It will lead to various levels of PMU data quality issues, which can directly affect the PMU-based application and even threaten the safety of power systems. In order to improve the PMU data quality, a data-driven PMU bad data detection algorithm based on spectral clustering using single PMU data is proposed in this paper. The proposed algorithm does not require the system topology and parameters. Firstly, a data identification method based on a decision tree is proposed to distinguish event data and bad data by using the slope feature of each data. Then, a bad data detection method based on spectral clustering is developed. By analyzing the weighted relationships among all the data, this method can detect the bad data with a small deviation. Simulations and results of field recording data test illustrate that this data-driven method can achieve bad data identification and detection effectively. This technique can improve PMU data quality to guarantee its applications in the power systems.展开更多
State estimation plays a vital role in the stable operation of modern power systems,but it is vulnerable to cyber attacks.False data injection attacks(FDIA),one of the most common cyber attacks,can tamper with measure...State estimation plays a vital role in the stable operation of modern power systems,but it is vulnerable to cyber attacks.False data injection attacks(FDIA),one of the most common cyber attacks,can tamper with measure-ment data and bypass the bad data detection(BDD)mechanism,leading to incorrect results of power system state estimation(PSSE).This paper presents a detection framework of FDIA for PSSE based on graph edge-conditioned convolutional networks(GECCN),which use topology information,node features and edge features.Through deep graph architecture,the correlation of sample data is effectively mined to establish the mapping relationship between the estimated values of measurements and the actual states of power systems.In addition,the edge-conditioned convolution operation allows processing data sets with different graph structures.Case studies are undertaken on the IEEE 14-bus system under different attack intensities and degrees to evaluate the performance of GECCN.Simulation results show that GECCN has better detection performance than convolutional neural networks,deep neural net-works and support vector machine.Moreover,the satisfactory detection performance obtained with the data sets of the IEEE 14-bus,30-bus and 118-bus systems verifies the effective scalability of GECCN.展开更多
基金supported by the National Key R&D Program (No.2017YFB0902901)the National Natural Science Foundation of China (No.51627811,No.51725702,and No.51707064)。
文摘Phasor measurement units(PMUs) can provide real-time measurement data to construct the ubiquitous electric of the Internet of Things. However, due to complex factors on site, PMU data can be easily compromised by interference or synchronization jitter. It will lead to various levels of PMU data quality issues, which can directly affect the PMU-based application and even threaten the safety of power systems. In order to improve the PMU data quality, a data-driven PMU bad data detection algorithm based on spectral clustering using single PMU data is proposed in this paper. The proposed algorithm does not require the system topology and parameters. Firstly, a data identification method based on a decision tree is proposed to distinguish event data and bad data by using the slope feature of each data. Then, a bad data detection method based on spectral clustering is developed. By analyzing the weighted relationships among all the data, this method can detect the bad data with a small deviation. Simulations and results of field recording data test illustrate that this data-driven method can achieve bad data identification and detection effectively. This technique can improve PMU data quality to guarantee its applications in the power systems.
基金supported in part by the Key-Area Research and Development Program of Guangdong Province under Grant 2020B010166004in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2020A1515111100+1 种基金in part by the National Natural Science Foundation of China under Grant 52207106in part by the Open Fund of State Key Laboratory of Operation and Control of Renewable Energy&Storage Systems(China Electric Power Research Institute)under Grant KJ80-21-001.
文摘State estimation plays a vital role in the stable operation of modern power systems,but it is vulnerable to cyber attacks.False data injection attacks(FDIA),one of the most common cyber attacks,can tamper with measure-ment data and bypass the bad data detection(BDD)mechanism,leading to incorrect results of power system state estimation(PSSE).This paper presents a detection framework of FDIA for PSSE based on graph edge-conditioned convolutional networks(GECCN),which use topology information,node features and edge features.Through deep graph architecture,the correlation of sample data is effectively mined to establish the mapping relationship between the estimated values of measurements and the actual states of power systems.In addition,the edge-conditioned convolution operation allows processing data sets with different graph structures.Case studies are undertaken on the IEEE 14-bus system under different attack intensities and degrees to evaluate the performance of GECCN.Simulation results show that GECCN has better detection performance than convolutional neural networks,deep neural net-works and support vector machine.Moreover,the satisfactory detection performance obtained with the data sets of the IEEE 14-bus,30-bus and 118-bus systems verifies the effective scalability of GECCN.