"视觉词袋"(Bag of Visual Words,BOV)算法是一种有效的基于语义特征表达的物体识别算法。针对传统BOV模型存在的不足,综合利用SAR图像的灰度和纹理特征,提出基于感兴趣目标(Target of Interest,TOI)的"视觉词袋"..."视觉词袋"(Bag of Visual Words,BOV)算法是一种有效的基于语义特征表达的物体识别算法。针对传统BOV模型存在的不足,综合利用SAR图像的灰度和纹理特征,提出基于感兴趣目标(Target of Interest,TOI)的"视觉词袋"算法。首先,对训练图像进行TOI选取,用灰度共生矩阵模型提取TOI的纹理特征,再结合灰度特征,组成多维特征向量集,以簇内相似度最高、数据分布密度最大为准则,生成"视觉词袋"。其次,对测试图像,依据已生成的"视觉词袋",采用支持向量机(Support Vector Machine,SVM)分类器,实现SAR图像感兴趣目标的有效分类。实验结果表明,与传统的"视觉词袋"构建算法相比,该算法在分类正确率提高的同时,能够在训练图像较少的情况下达到良好的分类效果。展开更多
提出了一种利用"bag of words"模型对视频内容进行建模和匹配的方法。通过量化视频帧的局部特征构建视觉关键词(visual words)辞典,将视频的子镜头表示成若干视觉关键词的集合。在此基础上构建基于子镜头的视觉关键词词组的...提出了一种利用"bag of words"模型对视频内容进行建模和匹配的方法。通过量化视频帧的局部特征构建视觉关键词(visual words)辞典,将视频的子镜头表示成若干视觉关键词的集合。在此基础上构建基于子镜头的视觉关键词词组的倒排索引,用于视频片段的匹配和检索。这种方法保留了局部特征的显著性及其相对位置关系,而且有效地压缩了视频的表达,加速的视频的匹配和检索过程。实验结果表明,和已有方法相比,基于"bag of words"的视频匹配方法在大视频样本库上获得了更高的检索精度和检索速度。展开更多
Bag of Words算法是一种有效的基于语义特征提取与表达的物体识别算法,算法充分学习文本检索算法的优点,将图片整理为一系列视觉词汇的集合,提取物体的语义特征,实现感兴趣物体的有效检测与识别。文章主要研究了Bagof Words算法的框架...Bag of Words算法是一种有效的基于语义特征提取与表达的物体识别算法,算法充分学习文本检索算法的优点,将图片整理为一系列视觉词汇的集合,提取物体的语义特征,实现感兴趣物体的有效检测与识别。文章主要研究了Bagof Words算法的框架和基本内容。展开更多
在视觉单词包模型(bag of visual words,BoVW)模型中,由于特征检测的不足、聚类算法的缺陷及视觉单词的量化误差,用BoVW模型产生的视觉词典中,存在视觉单词同义性和歧义性的问题,因此用BoVW计算图像距离时,效果不太理想。BoVW模型产生...在视觉单词包模型(bag of visual words,BoVW)模型中,由于特征检测的不足、聚类算法的缺陷及视觉单词的量化误差,用BoVW模型产生的视觉词典中,存在视觉单词同义性和歧义性的问题,因此用BoVW计算图像距离时,效果不太理想。BoVW模型产生的词典规模巨大,学习一个普通矩阵需要的运算量难以接受。针对BoVW模型上述缺陷,文章提出了一种基于SVM的BoVW距离度量学习方法。该方法利用SVM训练一个将相似图像对与非相似图像对最大程度分离的超平面,得到计算词频直方图点积的权重矩阵。在Oxford图像集上的检索实验表明了该方法的有效性。展开更多
在目标检索领域,当前主流的解决方案是视觉词典法(Bag of Visual Words,BoVW),然而,传统的BoVW方法具有时间效率低、内存消耗大以及视觉单词同义性和歧义性的问题。针对以上问题,该文提出了一种基于随机化视觉词典组和查询扩展的目标检...在目标检索领域,当前主流的解决方案是视觉词典法(Bag of Visual Words,BoVW),然而,传统的BoVW方法具有时间效率低、内存消耗大以及视觉单词同义性和歧义性的问题。针对以上问题,该文提出了一种基于随机化视觉词典组和查询扩展的目标检索方法。首先,该方法采用精确欧氏位置敏感哈希(Exact Euclidean LocalitySensitive Hashing,E2LSH)对训练图像库的局部特征点进行聚类,生成一组支持动态扩充的随机化视觉词典组;然后,基于这组词典构建视觉词汇分布直方图和索引文件;最后,引入一种查询扩展策略完成目标检索。实验结果表明,与传统方法相比,该文方法有效地增强了目标对象的可区分性,能够较大地提高目标检索精度,同时,对大规模数据库有较好的适用性。展开更多
文摘"视觉词袋"(Bag of Visual Words,BOV)算法是一种有效的基于语义特征表达的物体识别算法。针对传统BOV模型存在的不足,综合利用SAR图像的灰度和纹理特征,提出基于感兴趣目标(Target of Interest,TOI)的"视觉词袋"算法。首先,对训练图像进行TOI选取,用灰度共生矩阵模型提取TOI的纹理特征,再结合灰度特征,组成多维特征向量集,以簇内相似度最高、数据分布密度最大为准则,生成"视觉词袋"。其次,对测试图像,依据已生成的"视觉词袋",采用支持向量机(Support Vector Machine,SVM)分类器,实现SAR图像感兴趣目标的有效分类。实验结果表明,与传统的"视觉词袋"构建算法相比,该算法在分类正确率提高的同时,能够在训练图像较少的情况下达到良好的分类效果。
文摘提出了一种利用"bag of words"模型对视频内容进行建模和匹配的方法。通过量化视频帧的局部特征构建视觉关键词(visual words)辞典,将视频的子镜头表示成若干视觉关键词的集合。在此基础上构建基于子镜头的视觉关键词词组的倒排索引,用于视频片段的匹配和检索。这种方法保留了局部特征的显著性及其相对位置关系,而且有效地压缩了视频的表达,加速的视频的匹配和检索过程。实验结果表明,和已有方法相比,基于"bag of words"的视频匹配方法在大视频样本库上获得了更高的检索精度和检索速度。
文摘在视觉单词包模型(bag of visual words,BoVW)模型中,由于特征检测的不足、聚类算法的缺陷及视觉单词的量化误差,用BoVW模型产生的视觉词典中,存在视觉单词同义性和歧义性的问题,因此用BoVW计算图像距离时,效果不太理想。BoVW模型产生的词典规模巨大,学习一个普通矩阵需要的运算量难以接受。针对BoVW模型上述缺陷,文章提出了一种基于SVM的BoVW距离度量学习方法。该方法利用SVM训练一个将相似图像对与非相似图像对最大程度分离的超平面,得到计算词频直方图点积的权重矩阵。在Oxford图像集上的检索实验表明了该方法的有效性。