The flow field near a spur dike such as down flow and horseshoe vortex system(HVS)are susceptible to the topographic changes in the local scouring process,resulting in variation of the sediment transport with time.In ...The flow field near a spur dike such as down flow and horseshoe vortex system(HVS)are susceptible to the topographic changes in the local scouring process,resulting in variation of the sediment transport with time.In this study,large eddy simulations with fixed-bed at different scouring stages were conducted to investigate the changes in flow field.The results imply that the bed deformation leads to an increase in flow rate per unit area,which represent the capability of sediment transportation by water,in the scour hole.Moreover,the intensity of turbulent kinetic energy and bimodal motion near the sand bed induced by the HVS were also varied.However,the peak moments between the two sediment transport mechanisms were different.Hence,understanding the complex feedback mechanism between topography and flow field is essential for the local scour problem.展开更多
We studied an Archean mafic dike in the TransNorth China Orogen of the North China Craton, which has a magmatic age of 2701 ± 83 Ma and is currently the oldest mafic dike in the North China Craton. Such an old di...We studied an Archean mafic dike in the TransNorth China Orogen of the North China Craton, which has a magmatic age of 2701 ± 83 Ma and is currently the oldest mafic dike in the North China Craton. Such an old dike is extremely rare in the world. The presence of mafic dikes indicates that the North China Craton was in a tensional tectonic environment at 2.7 Ga. Geochemical characteristics reveal that this mafic dike belongs to continental tholeiitic basalt. Results from Hf isotope analysis reveal that the mafic dike originates from a depleted mantle. The plate assembly in the North China landmass was realized during the Archean era(2.7 Ga), and a thick and stable continental crust was formed. Therefore, the first cratonization of the North China Craton was completed before 2.7 Ga. The intrusion of the 2.7-Ga-old mafic dike from the deep lithospheric mantle of the continent indicates that the North China Craton has undergone a period of extensional tectonic activity. This event marks a significant extensional event that occurred after the cratonization of the North China Craton.展开更多
为了探究北江丁坝群对鱼类栖息地的影响,以北江干流英德段为研究区域,采用非结构化网格有限体积法(FVCOM),计算了不同流量条件下鲫鱼栖息地加权可利用面积(WUA),得到鱼类最适生态流量值。基于鱼类最适生态流量值开展了丁坝群对流速、水...为了探究北江丁坝群对鱼类栖息地的影响,以北江干流英德段为研究区域,采用非结构化网格有限体积法(FVCOM),计算了不同流量条件下鲫鱼栖息地加权可利用面积(WUA),得到鱼类最适生态流量值。基于鱼类最适生态流量值开展了丁坝群对流速、水深、鱼类栖息地适宜性指数和水力生境多样性变化的影响。结果表明:当上游为最适生态流量350 m 3/s时,丁坝群使得WUA由7.142 km 2降低至5.692 km 2;丁坝群会显著改变河道中心和近岸的流速,导致流速适宜度指数下降,进而降低整个研究区域的栖息地适宜度指数;丁坝群的水位壅高作用有限,最大壅高水深为0.38 m,对水深适宜度指数分布影响较小;在丁坝群作用下,栖息地可接受性高的面积占比由52.151%降至32.271%,降低了鱼类栖息地质量;丁坝群造成水力生境多样性辛普森指数由0.547降至0.529,使得研究区域内的水力生境多样性略微减少。研究成果可为北江鱼类栖息地保护和生态恢复提供参考。展开更多
基金supported by Shenzhen Science and Technology Program(Grant No.JCYJ20220818102012024)Hong Kong Research Grants Council(Grant Nos.T21–602/16-R and RGC R5037–18)。
文摘The flow field near a spur dike such as down flow and horseshoe vortex system(HVS)are susceptible to the topographic changes in the local scouring process,resulting in variation of the sediment transport with time.In this study,large eddy simulations with fixed-bed at different scouring stages were conducted to investigate the changes in flow field.The results imply that the bed deformation leads to an increase in flow rate per unit area,which represent the capability of sediment transportation by water,in the scour hole.Moreover,the intensity of turbulent kinetic energy and bimodal motion near the sand bed induced by the HVS were also varied.However,the peak moments between the two sediment transport mechanisms were different.Hence,understanding the complex feedback mechanism between topography and flow field is essential for the local scour problem.
基金supported by the open fund from the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources,Institute of Geology,Chinese Academy of Geological Sciences (Number J1901-16)the project of graduate education and teaching reform in Shanxi Province (Number 2021YJJG147)+3 种基金the teaching reform project"Geographic Modeling,Simulation and Visualization"established by Shanxi Normal University (Number2019JGXM-39)"The Research Start-up Fund of Shanxi Normal University for Dr.Peng Chong in 2016"(Number 0505/02070438)"The Research Start-up Fund of Shanxi Normal University for Dr.Liu Haiyan in 2017"(Number 0505/02070458)"The Research Fund for Outstanding Doctor in 2017"(Number 0503/02010168),established by the Education Department of Shanxi Province for Dr.Liu Haiyan。
文摘We studied an Archean mafic dike in the TransNorth China Orogen of the North China Craton, which has a magmatic age of 2701 ± 83 Ma and is currently the oldest mafic dike in the North China Craton. Such an old dike is extremely rare in the world. The presence of mafic dikes indicates that the North China Craton was in a tensional tectonic environment at 2.7 Ga. Geochemical characteristics reveal that this mafic dike belongs to continental tholeiitic basalt. Results from Hf isotope analysis reveal that the mafic dike originates from a depleted mantle. The plate assembly in the North China landmass was realized during the Archean era(2.7 Ga), and a thick and stable continental crust was formed. Therefore, the first cratonization of the North China Craton was completed before 2.7 Ga. The intrusion of the 2.7-Ga-old mafic dike from the deep lithospheric mantle of the continent indicates that the North China Craton has undergone a period of extensional tectonic activity. This event marks a significant extensional event that occurred after the cratonization of the North China Craton.
文摘为了探究北江丁坝群对鱼类栖息地的影响,以北江干流英德段为研究区域,采用非结构化网格有限体积法(FVCOM),计算了不同流量条件下鲫鱼栖息地加权可利用面积(WUA),得到鱼类最适生态流量值。基于鱼类最适生态流量值开展了丁坝群对流速、水深、鱼类栖息地适宜性指数和水力生境多样性变化的影响。结果表明:当上游为最适生态流量350 m 3/s时,丁坝群使得WUA由7.142 km 2降低至5.692 km 2;丁坝群会显著改变河道中心和近岸的流速,导致流速适宜度指数下降,进而降低整个研究区域的栖息地适宜度指数;丁坝群的水位壅高作用有限,最大壅高水深为0.38 m,对水深适宜度指数分布影响较小;在丁坝群作用下,栖息地可接受性高的面积占比由52.151%降至32.271%,降低了鱼类栖息地质量;丁坝群造成水力生境多样性辛普森指数由0.547降至0.529,使得研究区域内的水力生境多样性略微减少。研究成果可为北江鱼类栖息地保护和生态恢复提供参考。