期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Complex Precipitation Mechanism of Ti-Nb-V Microalloyed Bainitic Base High Strength Steel 被引量:4
1
作者 PANG Qihang GUO Jing +4 位作者 LI Weijuan TANG Di ZHAO Zhengzhi QI Huan WANG Jiaji 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第6期1444-1450,共7页
The addition of high Ti(>0.1%) in microalloyed bainitic high strength steel was designed, and the precipitation morphology of steels with different Ti, Nb, and V contents was studied by utilizing transmission ele... The addition of high Ti(>0.1%) in microalloyed bainitic high strength steel was designed, and the precipitation morphology of steels with different Ti, Nb, and V contents was studied by utilizing transmission electron microscopy(TEM). Based on the classical nucleation-crystal growth theory and the Johnson-Mehl-Avrami equation, the precipitation thermodynamic and kinetic model of second phase particles in austenite was established in the form of(Nbx,Vy,Tiz)C, and the complex precipitation mechanism of second phase particles was emphatically studied. The experimental results show that the complex precipitation particles could be divided into two categories: the coarser particles with about 100 nm grain size and the independent complex precipitation particles in the form of(Nb,V,Ti)C with 35-50 nm grain size. The latter has a better precipitation strengthening effect, and the calculated PTT curve shows a typical "C" shape. When the deformed storage energy is 3 820 J?mol-1, the fastest precipitation temperature of calculated PTT curve is 925 °C, and the calculated result is essentially consistent with experimental values. The increase of Ti content increased the nose point temperature and expanded the range of fastest precipitation temperature. 展开更多
关键词 bainite base high strength steel therm odynamic and dynamic complex precipitation behavior precipitation morphology
下载PDF
Microstructural Transformation and Precipitation of an Ultra-high Strength Steel under Continuous Cooling
2
作者 陈永利 ZHAO Yang +1 位作者 ZHOU Xuejiao HUANG Jianguo 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第2期387-392,共6页
We investigated phase transition and precipitation of ultra-high strength steel(UHSS)in a new "short process" with controlled rolling and controlled cooling.Thermalexpansion test combined with metallographic obser... We investigated phase transition and precipitation of ultra-high strength steel(UHSS)in a new "short process" with controlled rolling and controlled cooling.Thermalexpansion test combined with metallographic observation was used to research the continuous cooling transformation(CCT)curve.Moreover,the microstructuraltransformation and precipitation law was revealed by morphologicalobservation and alloying elements by electron probe micro-analyzer(EPMA).Transmission electron microscopy(TEM)was utilized to analyze the composition and grain orientation of microstructure.The study showed that the measured criticaltransformation temperatures of Ac1 and Ac3 were 746 and 868 ℃,respectively.The CCT curve indicated that the undercooled austenite was transformed into proeutectoid ferrite and bainite with HV 520 in a broad range of cooling rate 0.1^(-1) ℃·s^(-1).When subjected to a cooling rate of 1 ℃·s^(-1),the undercooled austenite was divided into small-sized blocks by formed martensite.With further increase of cooling rate,micro-hardness increased dramatically,the microstructure of specimen was mainly lathe bainite(LB),granular bainite(GB),lath martensite(LM)and residualaustenite.By diffraction test analysis,it was identified that there was K-S orientation relationship between martensite and austenite for {110}_α//{111}_γ,{111}_α//{101}_γ.EPMA clearly showed that carbon diffused adequately due to staying for a long time at high temperature with a lower cooling rate of 2 ℃·s-1.Phase transition drive force was lower and the residualaustenite existed in the block form of Martensite austenite island(M-A).With the increase of cooling rate to 10 ℃·s^(-1),the block residualaustenite reduced,the carbon content of residualaustenite increased and α phase around the residualaustenite formed into a low carbon bainite form. 展开更多
关键词 ultra high strength steel continuous cooling transformation medium plate bainite martensite residual austenite
下载PDF
Effect of Microstructure on Corrosion Fatigue Behavior of 1500 MPa Level Carbide-Free Bainite/Martensite Dual-Phase High Strength Steel 被引量:4
3
作者 XU Lei WEI Dong-yuan YU Yang ZHANG Han BAI Bing-zhe 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第4期63-67,共5页
Influence of microstructure of the experimental steels on the corrosion fatigue behavior in 3.5% of NaCl aqueous solution was studied.Experimental results show that compared with the full martensite(FM)steel,the car... Influence of microstructure of the experimental steels on the corrosion fatigue behavior in 3.5% of NaCl aqueous solution was studied.Experimental results show that compared with the full martensite(FM)steel,the carbide-free bainite/martensite(CFB/M)steel has higher corrosion fatigue strength and corrosion fatigue crack threshold(ΔKthcf),and lower corrosion crack propagation rate [(da/dN)cf]. 展开更多
关键词 high strength steel carbide-free bainite/martensite dual-phase steel corrosion fatigue
原文传递
Research on microstructural evolution and dynamic recrystailization behavior of JB800 bainitic steel by FEM
4
作者 Qingjun Chen Yonglin Kang +2 位作者 Hao Yu Chunmei Wang Chengxiang Li 《Journal of University of Science and Technology Beijing》 CSCD 2008年第3期250-254,共5页
Single pass compression tests were conducted on Gleeblel500 thermal simulator. The effect of different deformation parameters on the grain size of dynamically recrystallized austenite was analyzed. A mathematical mode... Single pass compression tests were conducted on Gleeblel500 thermal simulator. The effect of different deformation parameters on the grain size of dynamically recrystallized austenite was analyzed. A mathematical model of dynamic recrystallization and a material database of JB800 steel, whose tensile strength is above 800 MPa, were set up. A subprogram was compiled using Fortran language and called by Marc finite element software. A thermal coupled elastoplastic finite element model was established to simulate the compression process. The grain size of recrystallized austenite obtained by different recrystallization models was simulated. The results show that the optimized dynamic recrystallization model of JB800 bainitic steel has a higher precision and yields good agreement with metallographic observations. 展开更多
关键词 high strength bainitic steel dynamic recrystallization microstructural evolution finite element method
下载PDF
New bainite kinetics of high strength low alloy steel in fast cooling process
5
作者 Xuan-wei Lei Ji-hua Huang +1 位作者 Shu-hai Chen Xing-ke Zhao 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第2期229-233,共5页
Based on Kolmgorov-Johnson-Mehl-Avrami analysis, a new bainite kinetics of high strength low alloy steel in fast cooling process was developed by utilizing different experimental methods. Upper bainite transformation ... Based on Kolmgorov-Johnson-Mehl-Avrami analysis, a new bainite kinetics of high strength low alloy steel in fast cooling process was developed by utilizing different experimental methods. Upper bainite transformation morphological evolutions at a cooling rate of 8.3 K/s were directly observed by laser scanning confocal microscopy. This qualitative analysis suggests that bainite packet is more suitable to give a one-dimensional growth model if it is considered as a transformation unit. The nucleation rate of bainite packets in fast cooling process is assumed to give an a priori item. One-dimensional growth model with constant growth rate which is assumed as a function of cooling rate is adopted as well. Thus, the devel- oped new bainite kinetics is simple in expression and contains an adjustable parameter and an empirical pa rameter. Experimental results show upper bainite and lower bainite transformations in fast cooling processes. Their referential phase volume fractions are calculated by the expanded lever rule on the first derivative dilatometer curves. For the similar transformation mechanisms, upper bainite and lower bainite are considered to give the same kinetics. With considering the Nakamura's equation, the bainite kinetics is fitted with experimental data. Results show that bainite volume fractions and bainite transformation rates can be expressed precisely bY the newly developed bainite kinetics. 展开更多
关键词 bainite kinetics Fast cooling process high strength low alloy steel Upper bainite Lower bainite
原文传递
Corrosion Resistance on High Strength Bainitic Steel and 09CuPCrNi After Wet-Dry Cyclic Conditions 被引量:8
6
作者 WANG Zhi-fen YIN Fu-xing +2 位作者 WU Li-xin SUN Yi-qiang ZHANG Wan-lin 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2013年第2期72-78,共7页
The accelerated wet-dry cyclic corrosion tests have been carried out of a high strength bainitic steel and 09CuPCrNi. The results indicated that the corrosion resistance of 09CuPCrNi was better than that of the bainit... The accelerated wet-dry cyclic corrosion tests have been carried out of a high strength bainitic steel and 09CuPCrNi. The results indicated that the corrosion resistance of 09CuPCrNi was better than that of the bainitic steel based on the mass loss measurements. The morphology and composition of the rusting products have been investigated in order to realize the mechanism of rust formation on the two steels. The rust scale on both steels was composed of a dense inner layer and a loose outer layer. The inner layer grew thicker and denser as the test proceeding. Both of inner and outer layers were mainly composed of magnetite (Fe3O4) and maghemite (γ-Fe2O3) with a small amount of lepidocrocite (γ-FeOOH) and akaganeite (β-FeOOH). The rust phase of γ-Fe2O3 was detected in a higher amount of the inner layer, resulting in a much denser inner layer. The inner rust layer of 09CuPCrNi being denser and thicker than that of the high strength bainitic steel was attributed to the alloying elements such as copper, chromium and phosphorus enriched in it. The protective inner rust layer plays an important role in the corrosion resistance of the steel. 展开更多
关键词 high strength bainitic steel 09CuPCrNi rust layer corrosion resistance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部