The superiorities of air-cooled bainitic steels were described. A series of air-cooled bainitic steels containing manganese were developed and presented, which include low carbon granular bainitic steels, low carbon g...The superiorities of air-cooled bainitic steels were described. A series of air-cooled bainitic steels containing manganese were developed and presented, which include low carbon granular bainitic steels, low carbon grain-boundary allotriomorphic ferrite/granular bainite dual phase steels, medium and medium high carbon bainite/martensite dual phase steel, low carbon carbide free bainite/martensite dual phase steels and casting bainitic steels. The development of ultra-low carbon bainitic steels in China was also introduced.展开更多
Two kinds of Mn-Si-Mo low carbon steels were designed to study the effects of Mn on the microstructures and properties of hot rolled low carbon bainitic steels.To reduce the production cost,a very low Mo content of 0....Two kinds of Mn-Si-Mo low carbon steels were designed to study the effects of Mn on the microstructures and properties of hot rolled low carbon bainitic steels.To reduce the production cost,a very low Mo content of 0.13%was added in both steels.After hot rolling,the mechanical properties of samples were tested.Microstructure was observed and analyzed by optical microscope and transmission electron microscope.The results show that the strength of tested steels increases with the increase in Mn content,while the elongation decreases.When Mn content increases,the bainite microstructure increases.The results can provide a theoretical basis for composition design and industrial production of low cost low carbon bainitic steels.展开更多
CCT-diagrams of Si-Mn-Mo bainitic steels have been determined.With Mo 0.25%,the high-temperature transformation of the steel shifts large to the right,and the bainitic trans- formation region becomes a“flat topped C-...CCT-diagrams of Si-Mn-Mo bainitic steels have been determined.With Mo 0.25%,the high-temperature transformation of the steel shifts large to the right,and the bainitic trans- formation region becomes a“flat topped C-curve”at cooling rate in wide range.Si in the steel may cause shift of the bainitic transformation region towards the right,and of the pro-eutectoid ferritic transformation region towards the left.Mn may delay the high temper- ature transformation more violently than the bainitic transformation.展开更多
A creep technique was applied on a Gleeble-1500 thermal simulator for monitoring the aging precipitation in ultra-low carbon steels containing various coppers. The aging hardening curve was obtained by the hardness te...A creep technique was applied on a Gleeble-1500 thermal simulator for monitoring the aging precipitation in ultra-low carbon steels containing various coppers. The aging hardening curve was obtained by the hardness testing. With the aid of an optical microscope and TEM, the microstructure and the aging precipitates were detected. The results indicate that when the precipitation occurs during the creep a plateau will appear on the creep curve; the left-hand and right-hand endings of the plateau correspond to the precipitation start (Ps) and finish (Pf) times, respectively. The Pf obtained from the creep curve coincides with the peak hardness time (tp) at the aging hardening curve. A precipitation-time-temperature (PTT) diagram of the steel can be obtained.展开更多
The alloying design idea,strengthening-toughening mechanism,microstructure,mechanical performances,development and application in China of new type Mn-series bainitic steels are introduced.Mn-series air-cooling bainit...The alloying design idea,strengthening-toughening mechanism,microstructure,mechanical performances,development and application in China of new type Mn-series bainitic steels are introduced.Mn-series air-cooling bainitic steels including granular bainitic steels,FGBA /BG duplex steels,CFB/M duplex steels,medium carbon bainite/martensite steels,cast bainitic steels are presented.The invented idea mechanical performances,development and application of second generation of Mn-series bainitic steels,i.e.water quenching Mn-series bainitic steels invented by the authors newly are introduced.The water quenching Mn-series bainitic steels cover severe series steels containing ultra-low carbon,low-low carbon,medium-low carbon,and high-low carbon content etc,which can reduce the amount of alloying content,increase hardening capability and improve weldability.It should be pointed out that the application of both air cooling and water quenching Mn-series bainitic steels are complementary and mutually reinforcing,and the new type Mn-series bainitic steels can meet the performance requirements of most steels used in engineering structure.Some newest technologies of Mn-series bainitic steels in China are discussed in this paper.It is suggested that the significance of the development of the Mn-series bainitic steels can be summarized as:significantly reducing costs of both raw materials and production;good combination of strength and toughness;excellent weldability;simple procedure;large savings in energy resources and reduced environmental pollution.展开更多
Advanced bainitic steels with the multiphase structure of bainitic ferrite,retained austenite and martensite exhibit distinctive fatigue crack initiation behavior during high cycle fatigue/very high cycle fatigue(HCF/...Advanced bainitic steels with the multiphase structure of bainitic ferrite,retained austenite and martensite exhibit distinctive fatigue crack initiation behavior during high cycle fatigue/very high cycle fatigue(HCF/VHCF)regimes.The subsurface microstructural fatigue crack initiation,referred to as“non-inclusion induced crack initiation,NIICI”,is a leading mode of failure of bainitic steels within the HCF/VHCF regimes.In this regard,there is currently a missing gap in the knowledge with respect to the cyclic response of multiphase structure during VHCF failure and the underlying mechanisms of fatigue crack initiation during VHCF.To address this aspect,we have developed a novel approach that explicitly identifies the knowledge gap through an examination of subsurface crack initiation and interaction with the local microstructure.This was accomplished by uniquely combining electron microscopy,three-dimensional confocal microscopy,focused ion beam,and transmission Kikuchi diffraction.Interestingly,the study indicated that there are multiple micro-mechanisms responsible for the NIICI failure of bainitic steels,including two scenarios of transgranular-crack-assisted NIICI and two scenarios of intergranular-crack-assisted NIICI,which resulted in the different distribution of fine grains in the crack initiation area.The fine grains were formed through fragmentation of bainitic ferrite lath caused by localized plastic deformation or via local continuous dynamic recrystallization because of repeated interaction between slip bands and prior austenite grain boundaries.The formation of fine grains assisted the advancement of small cracks.Another important aspect discussed is the role of retained austenite(RA)during cyclic loading,on crack initiation and propagation in terms of the morphology,distribution and stability of RA,which determined the development of localized cyclic plastic deformation in multiphase structure.展开更多
The development and mechanical performances of new type air-cooled Mn series bainitic steels including granular bainitic steels, FGBA/BG duplex steels, CFB/M duplex steels, medium carbon bainite/martensite steels, cas...The development and mechanical performances of new type air-cooled Mn series bainitic steels including granular bainitic steels, FGBA/BG duplex steels, CFB/M duplex steels, medium carbon bainite/martensite steels, cast bainitic steels invented by the authors are summarized. The novel series of bainitic steels are alloyed with Mn, and several series bainitic duplex microstructures can be easily obtained under the condition of air cooling through unique composition design. The invented idea, the principle of alloying design, the strengthening mechanism, and the evolution of the microstructure of new type air cooled Mn series bainitic steels are presented. Furthermore, the applications in different fields of these Mn series air cooled bainitic steels with different strength level are also introduced. It is suggested that the significance of the development of the air cooled Mn series bainitic steel can be summarized as follows: reducing costs of both raw materials and production; good combination of strength and toughness; self-hardening with high bainitic hardenahility by air cooling from hot working without additional quenching-tempering treatment or quenching procedure; large savings in energy resources; and reduced environmental pollution.展开更多
CCT curves of Mn-Si steels with different manganese contents or carbon contents were determined. The results show that the transformation range of bainite can be separated from that of ferrite when the manganese conte...CCT curves of Mn-Si steels with different manganese contents or carbon contents were determined. The results show that the transformation range of bainite can be separated from that of ferrite when the manganese content approaches a certain content, and the incubation period of ferrite increases more significantly than that of bainite transformation with the increase of carbon content in Mn-Si steels. Furthermore, water-cooled bainitic steels without adding expensive alloying element were developed. Granular bainite was obtained when a bar with diameter of 300 mm was cooled by water, and a mixed microstructure of granular bainite and martensite was obtained in watercooled plate with thickness of 40 mm. The developed water-cooled bainitic Steels containing no expensive alloying element showed a good combination of strength and toughness. The tensile strength, yield strength, and toughness (AKU at --20℃ ) of bar with diameter of 300 mm after water cooling were higher than 850 MPa, 620 MPa, and 65 J, respectively, and those of plate with thickness of 40mm after water cooling were higher than 1000 MPa, 800 MPa, and 50J, respectively.展开更多
Thermomechanical process and tempering heat treatment were employed to produce the experimental steel plates. The effect of boron addition on the microstructure and mechanical properties of low carbon bainitic steels ...Thermomechanical process and tempering heat treatment were employed to produce the experimental steel plates. The effect of boron addition on the microstructure and mechanical properties of low carbon bainitic steels was studied in this paper. Microstructure observation and crystallographic features were conducted by using optical microscopy, SEM, TEM and electron back scattering diffraction (EBSD) analysis. The results showed that under the same rolling processes and heat treatment conditions, a substantial increase in strength is obtained by addition of boron into steel, but accompanied by an obvious drop in toughness. New martensite phase forms along the grain boundaries on tempering at 650℃ mainly due to boron segregation, which can further deteriorate impact toughness of the boron bearing steel. The EBSD analysis showed that high angle grain boundary, is not responsible for the deteriorated toughness of the boron bearing steel because it has relatively higher percentage of high angle grain boundary than the boron free steel. The low toughness of the boron bearing steel is mainly attributed to the coarse boride precipitated particles according to the results of fractograph observation.展开更多
Extremely valuable mechanical properties in combination with acceptable wear resistance can make nanostructural bainitic steels to be used extensively in different engineering and tribological applications. However, i...Extremely valuable mechanical properties in combination with acceptable wear resistance can make nanostructural bainitic steels to be used extensively in different engineering and tribological applications. However, it is critical to characterize the contributed factors to investigate the wear response of these high-strength materials. This work aims to study the wear behavior of two nanostructural bainitic steels with different amount of austenite stabilizer elements Mn and Ni. For this purpose, wear resistances of the materials were evaluated using the pin-on-disk method. The results indicated that the hardness of the sample is a critical factor affecting the tribological behavior, and the volume fraction and morphology of high-carbon retained austenite are also of considerable importance. It has also been demonstrated that transformation-induced plasticity effect during the wear test and oxide formation at worn surfaces are critical factors.展开更多
A new ferritic creep resistant steel has been developed by eliminating Nb and adding 1.5 mass % Re to a ferritic steel grade T/P23 with the aim of enhancing its mechanical properties at high temperature.Cast ingots of...A new ferritic creep resistant steel has been developed by eliminating Nb and adding 1.5 mass % Re to a ferritic steel grade T/P23 with the aim of enhancing its mechanical properties at high temperature.Cast ingots of both steels, new grade and ASTM T/P 23, were hot rolled at 900℃ and then submitted to a thermal treatment consisting of solubilization at 1050℃ and tempering at 700℃. Tempered bainitic microstructures obtained contain second phases reinforcing carbide particles, mainly M_6C and M_(23)C_6 at the boundaries of both, prior austenite grains and bainitic ferrite laths, as well as MC within the grains. Mechanical properties at temperatures ranging from 540 to 600℃ were studied by strain-ratechange tests in compression at strain rates between 10^(-7) and 10^(-4)s^(-1). These tests showed high stress exponents(n ≥ 20) and activation energies(Q ≈ 400 k J/mol) for both alloys, which were associated with a dislocation movement mechanism with a strong interaction between dislocations and precipitates. On the other hand, a creep exponent of 5 was derived for the stress dependence of minimum creep rate from conventional-type creep tests at 600℃. Although this stress exponent is usually related to a dislocation climb controlled creep mechanism, remarkable microstructural degradation observed with increasing creep time makes difficult to elucidate the true deformation mechanism controlling creep.展开更多
The packet size of bainitic steel can be refined by a specialrelaxation-precipitation-control phase transformation (RFC) technology. When processed by RPCprocess, the low carbon bainitic steel composes of two kinds of...The packet size of bainitic steel can be refined by a specialrelaxation-precipitation-control phase transformation (RFC) technology. When processed by RPCprocess, the low carbon bainitic steel composes of two kinds of main intermediate transformationphases. One is ultra-fine lath-like bainitic ferrite and the lath is less than 1μm in width andabout 6 μm in length; the alignment of laths forms a refined packet, and the size of packets isabout 5-7 μm in length and about 3-4μm in width. The other is acicular structure. The morphologyand distribution of these acicular structures are influenced by relaxation process, the thin andshort acicular structures cut the prior austenite grain and refine the bainitic packet size. For theoptimum relaxation time, the packet size can be refined to the finest. The mechanical propertiesare influenced by relaxation time and the 800 MPa grade low carbon bainitic steel with excellenttoughness can be obtained by RPC process.展开更多
The growth rates of bainite plates in an Fe-C-Mn-Si superbainitie steel were investigated by in situ observation. The lengthening rates of ferrite bainite during both cooling and isothermal holding processes were obse...The growth rates of bainite plates in an Fe-C-Mn-Si superbainitie steel were investigated by in situ observation. The lengthening rates of ferrite bainite during both cooling and isothermal holding processes were observed and the growth rates of bainite plates nucleating at grain boundaries, within grains and on preformed bainite were measured. It is indicated that the lengthening rates of bainite plates during the cooling and isothermal processes were different, and that the growth rates of bainite plates nucleating at different types of sites also demon- strated diversity. The bainite plates initiating at [vain boundaries during cooling grew the fastest, while the plates nucleating on preformed bainite did the slowest. However, the growth rate of the bainite plates nucleating at grain boundaries during isothermal transformation de- creased the most, whereas the bainite plates initiating within grains grew the fastest. In addition, the growth rate of ferrite bainite in the study supported the diffusion transformation mechanism of bainite from the viewooint of ~rowth rate.展开更多
In situ observations of austenite grain growth in Fe-C-Mn-Si super bainitic steel were conducted on a high-temperature laser scanning confocal microscope during continuous heating and subsequent isothermal holding at ...In situ observations of austenite grain growth in Fe-C-Mn-Si super bainitic steel were conducted on a high-temperature laser scanning confocal microscope during continuous heating and subsequent isothermal holding at 850, 1000, and 1100℃ for 30 min. A grain growth model was proposed based on experimental results. It is indicated that the austenite grain size increases with austenitizing temperature and holding time. When the austenitizing temperature is above 1100℃, the austenite grains grow rapidly, and abnormal austenite grains occur. In addition, the effect of heating rate on austenite grain growth was investigated, and the relation between austenite grains and bainite morphology after bainitic transformations was also discussed.展开更多
800 MPa grade new ultra-low carbon bainitic (NULCB) steel is the recently developed new generation steel. The microstructure in the coarse-grained heat affected zone (CGHAZ) of NULCB steel under laser welding cond...800 MPa grade new ultra-low carbon bainitic (NULCB) steel is the recently developed new generation steel. The microstructure in the coarse-grained heat affected zone (CGHAZ) of NULCB steel under laser welding conditions was investigated by thermal simulation. The influence of the cooling time from 800℃ to 500℃.t8/5 (0.3-30 s), on the microstructure of the CGHAZ was discussed. The experimental results indicate that the microstructnre of the CGHAZ is only the granular bainite which consists of bainitic ferrite (BF) lath and M-A constituent while t8/5 is 0.3-30 s. The M-A constituent consists of twinned martensite and residual austenite, and the change of the volume fraction of the residual austenite in the M-A constituent is very small when t8/5 is between 0.3 and 30 s. The morphology of the M-A constituent obviously changes with the variation of t8/5.As t8/5 increases, tile average width, gross and shape parameter of the M-A constituent increase, while the line density of the M-A constituent decreases.展开更多
The quantitative effects of chromium content on continuous cooling transformation (CCT) diagrams of novel air-cooled bainite steels were analyzed using artificial neural network models. The results showed that the c...The quantitative effects of chromium content on continuous cooling transformation (CCT) diagrams of novel air-cooled bainite steels were analyzed using artificial neural network models. The results showed that the chromium may retard the high and medium-temperature martensite transformation.展开更多
The addition of high Ti(>0.1%) in microalloyed bainitic high strength steel was designed, and the precipitation morphology of steels with different Ti, Nb, and V contents was studied by utilizing transmission ele...The addition of high Ti(>0.1%) in microalloyed bainitic high strength steel was designed, and the precipitation morphology of steels with different Ti, Nb, and V contents was studied by utilizing transmission electron microscopy(TEM). Based on the classical nucleation-crystal growth theory and the Johnson-Mehl-Avrami equation, the precipitation thermodynamic and kinetic model of second phase particles in austenite was established in the form of(Nbx,Vy,Tiz)C, and the complex precipitation mechanism of second phase particles was emphatically studied. The experimental results show that the complex precipitation particles could be divided into two categories: the coarser particles with about 100 nm grain size and the independent complex precipitation particles in the form of(Nb,V,Ti)C with 35-50 nm grain size. The latter has a better precipitation strengthening effect, and the calculated PTT curve shows a typical "C" shape. When the deformed storage energy is 3 820 J?mol-1, the fastest precipitation temperature of calculated PTT curve is 925 °C, and the calculated result is essentially consistent with experimental values. The increase of Ti content increased the nose point temperature and expanded the range of fastest precipitation temperature.展开更多
The impact toughness scattering in the ductile-brittle transition temperature (DBTT) region was experimentally examined on mixed and homogeneous grains of low alloy high strength bainitic steel under dynamic loading...The impact toughness scattering in the ductile-brittle transition temperature (DBTT) region was experimentally examined on mixed and homogeneous grains of low alloy high strength bainitic steel under dynamic loading conditions. The results revealed that the mixed grain microstructure had larger impact toughness scattering than the homogeneous one, and the impact toughness scattering was mainly caused by the scattering in the cleavage fractttre stress σf. The value of σf. is related to the size of the microcrack formed in the bainitic packet. When a bainitic packet-sized microcrack propagates from one bainitic packet into the adjacent packet, cleavage fracture occurs. The cleavage fracture is controlled by the few coarse packets in the microstructures, and the σf scattering is influenced by the varied distances/relative locations between these coarse packets, and homogenizing the distribution of fine bainitic packet sizes is an effective way to reduce the impact toughness scattering in the DBTT region.展开更多
The marteasite SA213-191 and bainite SA213-T23 high-temperature resistant steels were applied to the heating surface of the ultra supercritical thermal power unit boiler. The weld metal microstructures and welded join...The marteasite SA213-191 and bainite SA213-T23 high-temperature resistant steels were applied to the heating surface of the ultra supercritical thermal power unit boiler. The weld metal microstructures and welded joint performance between the two kinds of dissimilar steels were analyzed. The main reasons of the welding defects such as hot crack, cold crack, brittleness and decrease in toughness were discussed during the welding of the dissimilar heat-resistant steels of SA213- 191 and SA213-T23 in boiler manufacturing and processing operation. The welding materials were chosen and welding procedure was made according to the base metals.展开更多
The mechanical properties, creep rupture strength, creep damage and failure characteristics of dissimilar metal welded joint (DMWJ) between martensitic (SA213T91) and bainitic heat-resistant steel (12Cr2MoWVTiB(...The mechanical properties, creep rupture strength, creep damage and failure characteristics of dissimilar metal welded joint (DMWJ) between martensitic (SA213T91) and bainitic heat-resistant steel (12Cr2MoWVTiB(G102)) have been investigated by means of pulsed argon arc welding, high temperature accelerated simulation, mechanical and creep rupture test, and scanning electronic microscope (SEM). The results show that there is a marked drop of mechanical properties of undermatching joint, and low ductility cracking along weld/G102 interface is induced due to creep damage. Creep rupture strength of overmatching joint is the least. The mechanical properties of medium matching joint are superior to those of overmatching and undermatching joint, and creep damage and failure tendency along the interface of weld/G102 are lower than those of overmatching and undermatching joint after accelerated simulation for 500 h, 1 000 h, 1 500 h, and the creep rupture strength of medium matching joint is the same as that of undermatching joint. Therefore, it is reasonable that the medium matching material is used for dissimilar welded joint between martensitic and bainitic steel.展开更多
文摘The superiorities of air-cooled bainitic steels were described. A series of air-cooled bainitic steels containing manganese were developed and presented, which include low carbon granular bainitic steels, low carbon grain-boundary allotriomorphic ferrite/granular bainite dual phase steels, medium and medium high carbon bainite/martensite dual phase steel, low carbon carbide free bainite/martensite dual phase steels and casting bainitic steels. The development of ultra-low carbon bainitic steels in China was also introduced.
基金Funded by the National Natural Science Foundation of China(NSFC)(No.51274154)
文摘Two kinds of Mn-Si-Mo low carbon steels were designed to study the effects of Mn on the microstructures and properties of hot rolled low carbon bainitic steels.To reduce the production cost,a very low Mo content of 0.13%was added in both steels.After hot rolling,the mechanical properties of samples were tested.Microstructure was observed and analyzed by optical microscope and transmission electron microscope.The results show that the strength of tested steels increases with the increase in Mn content,while the elongation decreases.When Mn content increases,the bainite microstructure increases.The results can provide a theoretical basis for composition design and industrial production of low cost low carbon bainitic steels.
文摘CCT-diagrams of Si-Mn-Mo bainitic steels have been determined.With Mo 0.25%,the high-temperature transformation of the steel shifts large to the right,and the bainitic trans- formation region becomes a“flat topped C-curve”at cooling rate in wide range.Si in the steel may cause shift of the bainitic transformation region towards the right,and of the pro-eutectoid ferritic transformation region towards the left.Mn may delay the high temper- ature transformation more violently than the bainitic transformation.
基金financially supported by the National Natural Science Foundation of China (No. 50471089)
文摘A creep technique was applied on a Gleeble-1500 thermal simulator for monitoring the aging precipitation in ultra-low carbon steels containing various coppers. The aging hardening curve was obtained by the hardness testing. With the aid of an optical microscope and TEM, the microstructure and the aging precipitates were detected. The results indicate that when the precipitation occurs during the creep a plateau will appear on the creep curve; the left-hand and right-hand endings of the plateau correspond to the precipitation start (Ps) and finish (Pf) times, respectively. The Pf obtained from the creep curve coincides with the peak hardness time (tp) at the aging hardening curve. A precipitation-time-temperature (PTT) diagram of the steel can be obtained.
文摘The alloying design idea,strengthening-toughening mechanism,microstructure,mechanical performances,development and application in China of new type Mn-series bainitic steels are introduced.Mn-series air-cooling bainitic steels including granular bainitic steels,FGBA /BG duplex steels,CFB/M duplex steels,medium carbon bainite/martensite steels,cast bainitic steels are presented.The invented idea mechanical performances,development and application of second generation of Mn-series bainitic steels,i.e.water quenching Mn-series bainitic steels invented by the authors newly are introduced.The water quenching Mn-series bainitic steels cover severe series steels containing ultra-low carbon,low-low carbon,medium-low carbon,and high-low carbon content etc,which can reduce the amount of alloying content,increase hardening capability and improve weldability.It should be pointed out that the application of both air cooling and water quenching Mn-series bainitic steels are complementary and mutually reinforcing,and the new type Mn-series bainitic steels can meet the performance requirements of most steels used in engineering structure.Some newest technologies of Mn-series bainitic steels in China are discussed in this paper.It is suggested that the significance of the development of the Mn-series bainitic steels can be summarized as:significantly reducing costs of both raw materials and production;good combination of strength and toughness;excellent weldability;simple procedure;large savings in energy resources and reduced environmental pollution.
基金the funding by National Key Technologies Research and Development Program of China(2017YFB0304500)the support from National Natural Science Foundation of China(No.51771014)Joint Funds of National Natural Science Foundation of China(No.U1834202)。
文摘Advanced bainitic steels with the multiphase structure of bainitic ferrite,retained austenite and martensite exhibit distinctive fatigue crack initiation behavior during high cycle fatigue/very high cycle fatigue(HCF/VHCF)regimes.The subsurface microstructural fatigue crack initiation,referred to as“non-inclusion induced crack initiation,NIICI”,is a leading mode of failure of bainitic steels within the HCF/VHCF regimes.In this regard,there is currently a missing gap in the knowledge with respect to the cyclic response of multiphase structure during VHCF failure and the underlying mechanisms of fatigue crack initiation during VHCF.To address this aspect,we have developed a novel approach that explicitly identifies the knowledge gap through an examination of subsurface crack initiation and interaction with the local microstructure.This was accomplished by uniquely combining electron microscopy,three-dimensional confocal microscopy,focused ion beam,and transmission Kikuchi diffraction.Interestingly,the study indicated that there are multiple micro-mechanisms responsible for the NIICI failure of bainitic steels,including two scenarios of transgranular-crack-assisted NIICI and two scenarios of intergranular-crack-assisted NIICI,which resulted in the different distribution of fine grains in the crack initiation area.The fine grains were formed through fragmentation of bainitic ferrite lath caused by localized plastic deformation or via local continuous dynamic recrystallization because of repeated interaction between slip bands and prior austenite grain boundaries.The formation of fine grains assisted the advancement of small cracks.Another important aspect discussed is the role of retained austenite(RA)during cyclic loading,on crack initiation and propagation in terms of the morphology,distribution and stability of RA,which determined the development of localized cyclic plastic deformation in multiphase structure.
基金Item Sponsored by National Basic Research Programof China(2004CB619105)
文摘The development and mechanical performances of new type air-cooled Mn series bainitic steels including granular bainitic steels, FGBA/BG duplex steels, CFB/M duplex steels, medium carbon bainite/martensite steels, cast bainitic steels invented by the authors are summarized. The novel series of bainitic steels are alloyed with Mn, and several series bainitic duplex microstructures can be easily obtained under the condition of air cooling through unique composition design. The invented idea, the principle of alloying design, the strengthening mechanism, and the evolution of the microstructure of new type air cooled Mn series bainitic steels are presented. Furthermore, the applications in different fields of these Mn series air cooled bainitic steels with different strength level are also introduced. It is suggested that the significance of the development of the air cooled Mn series bainitic steel can be summarized as follows: reducing costs of both raw materials and production; good combination of strength and toughness; self-hardening with high bainitic hardenahility by air cooling from hot working without additional quenching-tempering treatment or quenching procedure; large savings in energy resources; and reduced environmental pollution.
基金Item Sponsored by National High Technology Research and Development Program("863"Program) of China (2007AA03Z511)
文摘CCT curves of Mn-Si steels with different manganese contents or carbon contents were determined. The results show that the transformation range of bainite can be separated from that of ferrite when the manganese content approaches a certain content, and the incubation period of ferrite increases more significantly than that of bainite transformation with the increase of carbon content in Mn-Si steels. Furthermore, water-cooled bainitic steels without adding expensive alloying element were developed. Granular bainite was obtained when a bar with diameter of 300 mm was cooled by water, and a mixed microstructure of granular bainite and martensite was obtained in watercooled plate with thickness of 40 mm. The developed water-cooled bainitic Steels containing no expensive alloying element showed a good combination of strength and toughness. The tensile strength, yield strength, and toughness (AKU at --20℃ ) of bar with diameter of 300 mm after water cooling were higher than 850 MPa, 620 MPa, and 65 J, respectively, and those of plate with thickness of 40mm after water cooling were higher than 1000 MPa, 800 MPa, and 50J, respectively.
基金financially supported by the National Natural Science Foundation of China (No.51074052)the Fundamental Research Funds of the Central Universities (No.N100607001)
文摘Thermomechanical process and tempering heat treatment were employed to produce the experimental steel plates. The effect of boron addition on the microstructure and mechanical properties of low carbon bainitic steels was studied in this paper. Microstructure observation and crystallographic features were conducted by using optical microscopy, SEM, TEM and electron back scattering diffraction (EBSD) analysis. The results showed that under the same rolling processes and heat treatment conditions, a substantial increase in strength is obtained by addition of boron into steel, but accompanied by an obvious drop in toughness. New martensite phase forms along the grain boundaries on tempering at 650℃ mainly due to boron segregation, which can further deteriorate impact toughness of the boron bearing steel. The EBSD analysis showed that high angle grain boundary, is not responsible for the deteriorated toughness of the boron bearing steel because it has relatively higher percentage of high angle grain boundary than the boron free steel. The low toughness of the boron bearing steel is mainly attributed to the coarse boride precipitated particles according to the results of fractograph observation.
基金Sahand University of Technology, Tabriz, Iran, for supporting and providing the research facilities
文摘Extremely valuable mechanical properties in combination with acceptable wear resistance can make nanostructural bainitic steels to be used extensively in different engineering and tribological applications. However, it is critical to characterize the contributed factors to investigate the wear response of these high-strength materials. This work aims to study the wear behavior of two nanostructural bainitic steels with different amount of austenite stabilizer elements Mn and Ni. For this purpose, wear resistances of the materials were evaluated using the pin-on-disk method. The results indicated that the hardness of the sample is a critical factor affecting the tribological behavior, and the volume fraction and morphology of high-carbon retained austenite are also of considerable importance. It has also been demonstrated that transformation-induced plasticity effect during the wear test and oxide formation at worn surfaces are critical factors.
基金supported by the Spanish Ministry of Economy and Competitiveness(MINECO)under Grant MAT2012-39124,MAT2015-68919,and MAT2016-80875
文摘A new ferritic creep resistant steel has been developed by eliminating Nb and adding 1.5 mass % Re to a ferritic steel grade T/P23 with the aim of enhancing its mechanical properties at high temperature.Cast ingots of both steels, new grade and ASTM T/P 23, were hot rolled at 900℃ and then submitted to a thermal treatment consisting of solubilization at 1050℃ and tempering at 700℃. Tempered bainitic microstructures obtained contain second phases reinforcing carbide particles, mainly M_6C and M_(23)C_6 at the boundaries of both, prior austenite grains and bainitic ferrite laths, as well as MC within the grains. Mechanical properties at temperatures ranging from 540 to 600℃ were studied by strain-ratechange tests in compression at strain rates between 10^(-7) and 10^(-4)s^(-1). These tests showed high stress exponents(n ≥ 20) and activation energies(Q ≈ 400 k J/mol) for both alloys, which were associated with a dislocation movement mechanism with a strong interaction between dislocations and precipitates. On the other hand, a creep exponent of 5 was derived for the stress dependence of minimum creep rate from conventional-type creep tests at 600℃. Although this stress exponent is usually related to a dislocation climb controlled creep mechanism, remarkable microstructural degradation observed with increasing creep time makes difficult to elucidate the true deformation mechanism controlling creep.
基金This work was financially supported by National Key Basic Research and Development Program of China (No.G1998061507) and Niobium Steel Development Project of CITIC-CBMM (No.2002RMJS-KY001)
文摘The packet size of bainitic steel can be refined by a specialrelaxation-precipitation-control phase transformation (RFC) technology. When processed by RPCprocess, the low carbon bainitic steel composes of two kinds of main intermediate transformationphases. One is ultra-fine lath-like bainitic ferrite and the lath is less than 1μm in width andabout 6 μm in length; the alignment of laths forms a refined packet, and the size of packets isabout 5-7 μm in length and about 3-4μm in width. The other is acicular structure. The morphologyand distribution of these acicular structures are influenced by relaxation process, the thin andshort acicular structures cut the prior austenite grain and refine the bainitic packet size. For theoptimum relaxation time, the packet size can be refined to the finest. The mechanical propertiesare influenced by relaxation time and the 800 MPa grade low carbon bainitic steel with excellenttoughness can be obtained by RPC process.
基金financially supported by the National Natural Science Foundation of China(No.51274154)the National High-Tech Research and Development Program of China(No.2012AA03A504)+1 种基金the State Key Laboratory of Development and Application Technology of Automotive Steels(Baosteel Group)the Key Project of Hubei Education Committee,China(No.20121101)
文摘The growth rates of bainite plates in an Fe-C-Mn-Si superbainitie steel were investigated by in situ observation. The lengthening rates of ferrite bainite during both cooling and isothermal holding processes were observed and the growth rates of bainite plates nucleating at grain boundaries, within grains and on preformed bainite were measured. It is indicated that the lengthening rates of bainite plates during the cooling and isothermal processes were different, and that the growth rates of bainite plates nucleating at different types of sites also demon- strated diversity. The bainite plates initiating at [vain boundaries during cooling grew the fastest, while the plates nucleating on preformed bainite did the slowest. However, the growth rate of the bainite plates nucleating at grain boundaries during isothermal transformation de- creased the most, whereas the bainite plates initiating within grains grew the fastest. In addition, the growth rate of ferrite bainite in the study supported the diffusion transformation mechanism of bainite from the viewooint of ~rowth rate.
基金the National Natural Science Foundation of China(No.51274154)the National High-Tech Research and Development Program of China(No.2012AA03A504)+1 种基金the State Key Laboratory of Development and Application Technology of Automo-tive Steels(Baosteel Group)the Key Project of Hubei Education Committee(No.D20121101)
文摘In situ observations of austenite grain growth in Fe-C-Mn-Si super bainitic steel were conducted on a high-temperature laser scanning confocal microscope during continuous heating and subsequent isothermal holding at 850, 1000, and 1100℃ for 30 min. A grain growth model was proposed based on experimental results. It is indicated that the austenite grain size increases with austenitizing temperature and holding time. When the austenitizing temperature is above 1100℃, the austenite grains grow rapidly, and abnormal austenite grains occur. In addition, the effect of heating rate on austenite grain growth was investigated, and the relation between austenite grains and bainite morphology after bainitic transformations was also discussed.
文摘800 MPa grade new ultra-low carbon bainitic (NULCB) steel is the recently developed new generation steel. The microstructure in the coarse-grained heat affected zone (CGHAZ) of NULCB steel under laser welding conditions was investigated by thermal simulation. The influence of the cooling time from 800℃ to 500℃.t8/5 (0.3-30 s), on the microstructure of the CGHAZ was discussed. The experimental results indicate that the microstructnre of the CGHAZ is only the granular bainite which consists of bainitic ferrite (BF) lath and M-A constituent while t8/5 is 0.3-30 s. The M-A constituent consists of twinned martensite and residual austenite, and the change of the volume fraction of the residual austenite in the M-A constituent is very small when t8/5 is between 0.3 and 30 s. The morphology of the M-A constituent obviously changes with the variation of t8/5.As t8/5 increases, tile average width, gross and shape parameter of the M-A constituent increase, while the line density of the M-A constituent decreases.
文摘The quantitative effects of chromium content on continuous cooling transformation (CCT) diagrams of novel air-cooled bainite steels were analyzed using artificial neural network models. The results showed that the chromium may retard the high and medium-temperature martensite transformation.
基金Funded by the National Natural Science Foundation of China(No.U1860112)the State Key Laboratory of Marine Equipment made of Metal Material and Application(No.SKLMEAUSTL-201708 and No.SKLMEA-USTL-201703)+1 种基金the Key Project of Liaoning Education Department(No.2019FWDF03)the National Natural Science Foundation of USTL(No.2017QN11)
文摘The addition of high Ti(>0.1%) in microalloyed bainitic high strength steel was designed, and the precipitation morphology of steels with different Ti, Nb, and V contents was studied by utilizing transmission electron microscopy(TEM). Based on the classical nucleation-crystal growth theory and the Johnson-Mehl-Avrami equation, the precipitation thermodynamic and kinetic model of second phase particles in austenite was established in the form of(Nbx,Vy,Tiz)C, and the complex precipitation mechanism of second phase particles was emphatically studied. The experimental results show that the complex precipitation particles could be divided into two categories: the coarser particles with about 100 nm grain size and the independent complex precipitation particles in the form of(Nb,V,Ti)C with 35-50 nm grain size. The latter has a better precipitation strengthening effect, and the calculated PTT curve shows a typical "C" shape. When the deformed storage energy is 3 820 J?mol-1, the fastest precipitation temperature of calculated PTT curve is 925 °C, and the calculated result is essentially consistent with experimental values. The increase of Ti content increased the nose point temperature and expanded the range of fastest precipitation temperature.
基金Sponsored by the National Basic Research Program of China(No.2011CB610405)the Reactor Material Development Research Project of Shanghai Baoshan Iron&Steel Research Institute(No.X08ECEJ190)
文摘The impact toughness scattering in the ductile-brittle transition temperature (DBTT) region was experimentally examined on mixed and homogeneous grains of low alloy high strength bainitic steel under dynamic loading conditions. The results revealed that the mixed grain microstructure had larger impact toughness scattering than the homogeneous one, and the impact toughness scattering was mainly caused by the scattering in the cleavage fractttre stress σf. The value of σf. is related to the size of the microcrack formed in the bainitic packet. When a bainitic packet-sized microcrack propagates from one bainitic packet into the adjacent packet, cleavage fracture occurs. The cleavage fracture is controlled by the few coarse packets in the microstructures, and the σf scattering is influenced by the varied distances/relative locations between these coarse packets, and homogenizing the distribution of fine bainitic packet sizes is an effective way to reduce the impact toughness scattering in the DBTT region.
文摘The marteasite SA213-191 and bainite SA213-T23 high-temperature resistant steels were applied to the heating surface of the ultra supercritical thermal power unit boiler. The weld metal microstructures and welded joint performance between the two kinds of dissimilar steels were analyzed. The main reasons of the welding defects such as hot crack, cold crack, brittleness and decrease in toughness were discussed during the welding of the dissimilar heat-resistant steels of SA213- 191 and SA213-T23 in boiler manufacturing and processing operation. The welding materials were chosen and welding procedure was made according to the base metals.
基金Funded by State Key Lab of Advanced Welding and Joint,Harbin Institute of Technology(No.09014)the Natural Science Foundation of Hubei Province in China(No.2007ABA040)
文摘The mechanical properties, creep rupture strength, creep damage and failure characteristics of dissimilar metal welded joint (DMWJ) between martensitic (SA213T91) and bainitic heat-resistant steel (12Cr2MoWVTiB(G102)) have been investigated by means of pulsed argon arc welding, high temperature accelerated simulation, mechanical and creep rupture test, and scanning electronic microscope (SEM). The results show that there is a marked drop of mechanical properties of undermatching joint, and low ductility cracking along weld/G102 interface is induced due to creep damage. Creep rupture strength of overmatching joint is the least. The mechanical properties of medium matching joint are superior to those of overmatching and undermatching joint, and creep damage and failure tendency along the interface of weld/G102 are lower than those of overmatching and undermatching joint after accelerated simulation for 500 h, 1 000 h, 1 500 h, and the creep rupture strength of medium matching joint is the same as that of undermatching joint. Therefore, it is reasonable that the medium matching material is used for dissimilar welded joint between martensitic and bainitic steel.